Compare commits

...

8 Commits

Author SHA1 Message Date
03df01959d Merge 1a0ba385eb into 7050ed204b 2024-03-19 17:00:21 +01:00
7050ed204b Corrected name of package "cuda12-pip" (#194)
The `cuda12-pip` package was wrongly named `cuda12_pip`
in requirements.txt
2024-03-19 08:48:22 -07:00
1a0ba385eb Add exceptions to LanguageModel 2024-03-18 18:40:37 -04:00
d6d9447e2d Update huggingface link 2024-03-18 11:40:01 -07:00
7207216386 Create .gitignore for checkpoints (#149)
ignore the checkpoints files
2024-03-18 11:01:17 -07:00
310e19eee2 Corrected checkpoint dir name, download section link 2024-03-18 09:39:02 -07:00
1ff4435d25 Update README with Model Specifications (#27)
Added an overview of the model as discussed in response to #14. 

Adding more info on the the model specs before they proceed to download
the checkpoints should help folks ensure they have the necessary
resources to effectively utilize Grok-1.
2024-03-18 09:36:24 -07:00
b0e77734fe Make download instruction more clear (#155) 2024-03-18 09:11:17 -07:00
4 changed files with 47 additions and 25 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
checkpoints/*
!checkpoints/README.md

View File

@ -2,7 +2,8 @@
This repository contains JAX example code for loading and running the Grok-1 open-weights model.
Make sure to download the checkpoint and place `ckpt-0` directory in `checkpoint`.
Make sure to download the checkpoint and place the `ckpt-0` directory in `checkpoints` - see [Downloading the weights](#downloading-the-weights)
Then, run
```shell
@ -17,13 +18,37 @@ The script loads the checkpoint and samples from the model on a test input.
Due to the large size of the model (314B parameters), a machine with enough GPU memory is required to test the model with the example code.
The implementation of the MoE layer in this repository is not efficient. The implementation was chosen to avoid the need for custom kernels to validate the correctness of the model.
# Model Specifications
Grok-1 is currently designed with the following specifications:
- **Parameters:** 314B
- **Architecture:** Mixture of 8 Experts (MoE)
- **Experts Utilization:** 2 experts used per token
- **Layers:** 64
- **Attention Heads:** 48 for queries, 8 for keys/values
- **Embedding Size:** 6,144
- **Tokenization:** SentencePiece tokenizer with 131,072 tokens
- **Additional Features:**
- Rotary embeddings (RoPE)
- Supports activation sharding and 8-bit quantization
- **Maximum Sequence Length (context):** 8,192 tokens
# Downloading the weights
You can download the weights using a torrent client and this magnet link:
```
magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce
```
or directly using [HuggingFace 🤗 Hub](https://huggingface.co/xai-org/grok-1):
```
git clone https://github.com/xai-org/grok-1.git && cd grok-1
pip install huggingface_hub[hf_transfer]
huggingface-cli download xai-org/grok-1 --repo-type model --include ckpt-0/* --local-dir checkpoints --local-dir-use-symlinks False
```
# License
The code and associated Grok-1 weights in this release are licensed under the

View File

@ -1002,7 +1002,7 @@ class DenseBlock(hk.Module):
sharding=P("model", "data"),
mesh=self.mesh,
shard_axis=1,
)(h_w1 * h_v)
)(h_w1 * h_v) # TODO: Document why this isn't sequential and whether it should be.
return h_dense
@ -1036,13 +1036,10 @@ class DecoderLayer(hk.Module):
) -> DecoderOutput:
"""Transforms input embedding sequences to output embedding sequences."""
def layer_norm(x):
return hk_rms_norm(x)
sharding = P(self.data_axis, None)
if self.shard_activations:
sharding = P(self.data_axis, None, self.model_axis)
else:
sharding = P(self.data_axis, None)
h = with_sharding_constraint(inputs, sharding)
attn_output = MHABlock(
@ -1054,8 +1051,8 @@ class DecoderLayer(hk.Module):
data_axis=self.data_axis,
model_axis=self.model_axis,
)(layer_norm(h), mask, layer_memory)
h_attn = attn_output.embeddings
h_attn = attn_output.embeddings
h_attn = layer_norm(h_attn)
h += h_attn
h = with_sharding_constraint(h, sharding)
@ -1165,15 +1162,17 @@ class LanguageModelConfig:
_initialized = False
def initialize(self):
# We cannot specify [] as a default value (it is mutable), hence None.
model_config = self.model
assert self.init_scale_override is None, (
"Overriding model initialize scale is supported only for predefined models."
)
if self.model is None: # We cannot specify [] as a default value (it is mutable), hence None.
raise ValueError("Model configuration is not set.")
if self.init_scale_override is not None:
raise ValueError("Overriding model initialize scale is supported only for predefined models.")
if self.model_size == 0:
self.model_size = model_config.emb_size
assert self.model is not None, "Model could not be initialized."
self._initialized = True
return self
def make(self, *args, **kwargs):
@ -1194,7 +1193,7 @@ class LanguageModelConfig:
return LM_PARTITION_RULES + self.model.partition_rules()
def layer_norm(x, model):
def layer_norm(x):
return hk_rms_norm(x)
@ -1213,17 +1212,12 @@ class LanguageModel(hk.Module):
tokens: jax.Array,
memory: Optional[Memory] = None,
*,
batch: Dict[str, jax.Array] = {},
last_hid_only: bool = False,
length: Optional[jax.Array] = None,
) -> LanguageModelOutput:
"""Forward pass, producing a sequence of logits."""
del batch # Unused.
config = self.config
input_mask = jnp.greater(tokens, config.pad_token)
# Embed the input tokens and positions.
in_out_embed = InOutEmbed(
self.config.vocab_size,
@ -1235,6 +1229,7 @@ class LanguageModel(hk.Module):
input_embeddings, P("data", None, self.model.model_axis)
)
input_embeddings *= config.embedding_multiplier_scale
input_mask = jnp.not_equal(tokens, config.pad_token)
model_output = self.model(
input_embeddings,
@ -1242,15 +1237,15 @@ class LanguageModel(hk.Module):
memory=memory,
) # [B, T, D]
embeddings, model_state = model_output.embeddings, model_output.memory
if embeddings.dtype != self.fprop_dtype:
raise ValueError(f"Expected forward propagation dtype {self.fprop_dtype} but got {embeddings.dtype} in embeddings.")
if self.model.shard_activations:
embeddings = with_sharding_constraint(
embeddings, P("data", None, self.model.model_axis)
)
embeddings = with_sharding_constraint(embeddings, P("data", None, self.model.model_axis))
else:
embeddings = with_sharding_constraint(embeddings, P("data", None))
rank_logger.debug(f"Final embedding shape: {embeddings.shape}")
embeddings = layer_norm(embeddings, self.model)
assert embeddings.dtype == self.fprop_dtype
embeddings = layer_norm(embeddings)
if last_hid_only:
last_step = jnp.maximum(jnp.sum(input_mask.astype(jnp.int32), axis=1) - 1, 0)

View File

@ -1,4 +1,4 @@
dm_haiku==0.0.12
jax[cuda12_pip]==0.4.25 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
jax[cuda12-pip]==0.4.25 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
numpy==1.26.4
sentencepiece==0.2.0