mirror of
https://github.com/xai-org/grok-1.git
synced 2024-11-24 12:39:54 +03:00
Update run.py
This commit is contained in:
parent
7050ed204b
commit
58690bf060
158
run.py
158
run.py
@ -13,60 +13,128 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
|
import os
|
||||||
|
from cryptography.fernet import Fernet
|
||||||
from model import LanguageModelConfig, TransformerConfig, QuantizedWeight8bit as QW8Bit
|
from model import LanguageModelConfig, TransformerConfig, QuantizedWeight8bit as QW8Bit
|
||||||
from runners import InferenceRunner, ModelRunner, sample_from_model
|
from runners import InferenceRunner, ModelRunner, sample_from_model
|
||||||
|
|
||||||
|
# Secure Key Management
|
||||||
|
KEY_ENV_VAR = 'ENCRYPTION_KEY'
|
||||||
|
KEY = os.getenv(KEY_ENV_VAR)
|
||||||
|
if not KEY:
|
||||||
|
raise ValueError(f"Encryption key must be set in the environment variable {KEY_ENV_VAR}")
|
||||||
|
cipher_suite = Fernet(KEY)
|
||||||
|
|
||||||
CKPT_PATH = "./checkpoints/"
|
# Define paths
|
||||||
|
CKPT_PATH = os.getenv('CHECKPOINT_PATH', './checkpoints/')
|
||||||
|
TOKENIZER_PATH = os.getenv('TOKENIZER_PATH', './tokenizer.model')
|
||||||
|
|
||||||
|
# Configure logging
|
||||||
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||||
|
|
||||||
|
def initialize_model() -> LanguageModelConfig:
|
||||||
|
"""Initialize and return the language model configuration."""
|
||||||
|
try:
|
||||||
|
model_config = LanguageModelConfig(
|
||||||
|
vocab_size=128 * 1024,
|
||||||
|
pad_token=0,
|
||||||
|
eos_token=2,
|
||||||
|
sequence_len=8192,
|
||||||
|
embedding_init_scale=1.0,
|
||||||
|
output_multiplier_scale=0.5773502691896257,
|
||||||
|
embedding_multiplier_scale=78.38367176906169,
|
||||||
|
model=TransformerConfig(
|
||||||
|
emb_size=48 * 128,
|
||||||
|
widening_factor=8,
|
||||||
|
key_size=128,
|
||||||
|
num_q_heads=48,
|
||||||
|
num_kv_heads=8,
|
||||||
|
num_layers=64,
|
||||||
|
attn_output_multiplier=0.08838834764831845,
|
||||||
|
shard_activations=True,
|
||||||
|
num_experts=8,
|
||||||
|
num_selected_experts=2,
|
||||||
|
data_axis="data",
|
||||||
|
model_axis="model",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
logging.info("Model initialized successfully.")
|
||||||
|
return model_config
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error initializing model: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def initialize_inference_runner(model: LanguageModelConfig) -> InferenceRunner:
|
||||||
|
"""Initialize and return the inference runner."""
|
||||||
|
try:
|
||||||
|
inference_runner = InferenceRunner(
|
||||||
|
pad_sizes=(1024,),
|
||||||
|
runner=ModelRunner(
|
||||||
|
model=model,
|
||||||
|
bs_per_device=0.125,
|
||||||
|
checkpoint_path=CKPT_PATH,
|
||||||
|
),
|
||||||
|
name="local",
|
||||||
|
load=CKPT_PATH,
|
||||||
|
tokenizer_path=TOKENIZER_PATH,
|
||||||
|
local_mesh_config=(1, 8),
|
||||||
|
between_hosts_config=(1, 1),
|
||||||
|
)
|
||||||
|
inference_runner.initialize()
|
||||||
|
logging.info("Inference runner initialized successfully.")
|
||||||
|
return inference_runner
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error initializing inference runner: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def encrypt_message(message: str) -> str:
|
||||||
|
"""Encrypt the message using Fernet encryption."""
|
||||||
|
try:
|
||||||
|
encrypted_message = cipher_suite.encrypt(message.encode())
|
||||||
|
return encrypted_message.decode()
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error encrypting message: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def decrypt_message(encrypted_message: str) -> str:
|
||||||
|
"""Decrypt the message using Fernet encryption."""
|
||||||
|
try:
|
||||||
|
decrypted_message = cipher_suite.decrypt(encrypted_message.encode())
|
||||||
|
return decrypted_message.decode()
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error decrypting message: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def generate_text(prompt: str, runner: InferenceRunner) -> str:
|
||||||
|
"""Generate text from the given prompt using the inference runner."""
|
||||||
|
try:
|
||||||
|
logging.info("Running inference...")
|
||||||
|
gen = runner.run()
|
||||||
|
return sample_from_model(gen, prompt, max_len=100, temperature=0.01)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error generating text: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
grok_1_model = LanguageModelConfig(
|
try:
|
||||||
vocab_size=128 * 1024,
|
logging.info("Initializing model...")
|
||||||
pad_token=0,
|
model = initialize_model()
|
||||||
eos_token=2,
|
|
||||||
sequence_len=8192,
|
|
||||||
embedding_init_scale=1.0,
|
|
||||||
output_multiplier_scale=0.5773502691896257,
|
|
||||||
embedding_multiplier_scale=78.38367176906169,
|
|
||||||
model=TransformerConfig(
|
|
||||||
emb_size=48 * 128,
|
|
||||||
widening_factor=8,
|
|
||||||
key_size=128,
|
|
||||||
num_q_heads=48,
|
|
||||||
num_kv_heads=8,
|
|
||||||
num_layers=64,
|
|
||||||
attn_output_multiplier=0.08838834764831845,
|
|
||||||
shard_activations=True,
|
|
||||||
# MoE.
|
|
||||||
num_experts=8,
|
|
||||||
num_selected_experts=2,
|
|
||||||
# Activation sharding.
|
|
||||||
data_axis="data",
|
|
||||||
model_axis="model",
|
|
||||||
),
|
|
||||||
)
|
|
||||||
inference_runner = InferenceRunner(
|
|
||||||
pad_sizes=(1024,),
|
|
||||||
runner=ModelRunner(
|
|
||||||
model=grok_1_model,
|
|
||||||
bs_per_device=0.125,
|
|
||||||
checkpoint_path=CKPT_PATH,
|
|
||||||
),
|
|
||||||
name="local",
|
|
||||||
load=CKPT_PATH,
|
|
||||||
tokenizer_path="./tokenizer.model",
|
|
||||||
local_mesh_config=(1, 8),
|
|
||||||
between_hosts_config=(1, 1),
|
|
||||||
)
|
|
||||||
inference_runner.initialize()
|
|
||||||
gen = inference_runner.run()
|
|
||||||
|
|
||||||
inp = "The answer to life the universe and everything is of course"
|
logging.info("Setting up inference runner...")
|
||||||
print(f"Output for prompt: {inp}", sample_from_model(gen, inp, max_len=100, temperature=0.01))
|
inference_runner = initialize_inference_runner(model)
|
||||||
|
|
||||||
|
prompt = "The answer to life the universe and everything is of course"
|
||||||
|
logging.info("Generating output...")
|
||||||
|
output = generate_text(prompt, inference_runner)
|
||||||
|
|
||||||
|
encrypted_output = encrypt_message(output)
|
||||||
|
decrypted_output = decrypt_message(encrypted_output)
|
||||||
|
|
||||||
|
logging.info(f"Output for prompt: {prompt}")
|
||||||
|
print(decrypted_output)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred: {e}")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
logging.basicConfig(level=logging.INFO)
|
|
||||||
main()
|
main()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user