From 58690bf060aca6687a7703612c5c3eca39124fd0 Mon Sep 17 00:00:00 2001 From: ClumsyLulz <86472964+SleepTheGod@users.noreply.github.com> Date: Wed, 7 Aug 2024 19:51:43 -0400 Subject: [PATCH] Update run.py --- run.py | 162 ++++++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 115 insertions(+), 47 deletions(-) diff --git a/run.py b/run.py index f1e157a..2c5d090 100644 --- a/run.py +++ b/run.py @@ -13,60 +13,128 @@ # limitations under the License. import logging - +import os +from cryptography.fernet import Fernet from model import LanguageModelConfig, TransformerConfig, QuantizedWeight8bit as QW8Bit from runners import InferenceRunner, ModelRunner, sample_from_model +# Secure Key Management +KEY_ENV_VAR = 'ENCRYPTION_KEY' +KEY = os.getenv(KEY_ENV_VAR) +if not KEY: + raise ValueError(f"Encryption key must be set in the environment variable {KEY_ENV_VAR}") +cipher_suite = Fernet(KEY) -CKPT_PATH = "./checkpoints/" +# Define paths +CKPT_PATH = os.getenv('CHECKPOINT_PATH', './checkpoints/') +TOKENIZER_PATH = os.getenv('TOKENIZER_PATH', './tokenizer.model') +# Configure logging +logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') + +def initialize_model() -> LanguageModelConfig: + """Initialize and return the language model configuration.""" + try: + model_config = LanguageModelConfig( + vocab_size=128 * 1024, + pad_token=0, + eos_token=2, + sequence_len=8192, + embedding_init_scale=1.0, + output_multiplier_scale=0.5773502691896257, + embedding_multiplier_scale=78.38367176906169, + model=TransformerConfig( + emb_size=48 * 128, + widening_factor=8, + key_size=128, + num_q_heads=48, + num_kv_heads=8, + num_layers=64, + attn_output_multiplier=0.08838834764831845, + shard_activations=True, + num_experts=8, + num_selected_experts=2, + data_axis="data", + model_axis="model", + ), + ) + logging.info("Model initialized successfully.") + return model_config + except Exception as e: + logging.error(f"Error initializing model: {e}") + raise + +def initialize_inference_runner(model: LanguageModelConfig) -> InferenceRunner: + """Initialize and return the inference runner.""" + try: + inference_runner = InferenceRunner( + pad_sizes=(1024,), + runner=ModelRunner( + model=model, + bs_per_device=0.125, + checkpoint_path=CKPT_PATH, + ), + name="local", + load=CKPT_PATH, + tokenizer_path=TOKENIZER_PATH, + local_mesh_config=(1, 8), + between_hosts_config=(1, 1), + ) + inference_runner.initialize() + logging.info("Inference runner initialized successfully.") + return inference_runner + except Exception as e: + logging.error(f"Error initializing inference runner: {e}") + raise + +def encrypt_message(message: str) -> str: + """Encrypt the message using Fernet encryption.""" + try: + encrypted_message = cipher_suite.encrypt(message.encode()) + return encrypted_message.decode() + except Exception as e: + logging.error(f"Error encrypting message: {e}") + raise + +def decrypt_message(encrypted_message: str) -> str: + """Decrypt the message using Fernet encryption.""" + try: + decrypted_message = cipher_suite.decrypt(encrypted_message.encode()) + return decrypted_message.decode() + except Exception as e: + logging.error(f"Error decrypting message: {e}") + raise + +def generate_text(prompt: str, runner: InferenceRunner) -> str: + """Generate text from the given prompt using the inference runner.""" + try: + logging.info("Running inference...") + gen = runner.run() + return sample_from_model(gen, prompt, max_len=100, temperature=0.01) + except Exception as e: + logging.error(f"Error generating text: {e}") + raise def main(): - grok_1_model = LanguageModelConfig( - vocab_size=128 * 1024, - pad_token=0, - eos_token=2, - sequence_len=8192, - embedding_init_scale=1.0, - output_multiplier_scale=0.5773502691896257, - embedding_multiplier_scale=78.38367176906169, - model=TransformerConfig( - emb_size=48 * 128, - widening_factor=8, - key_size=128, - num_q_heads=48, - num_kv_heads=8, - num_layers=64, - attn_output_multiplier=0.08838834764831845, - shard_activations=True, - # MoE. - num_experts=8, - num_selected_experts=2, - # Activation sharding. - data_axis="data", - model_axis="model", - ), - ) - inference_runner = InferenceRunner( - pad_sizes=(1024,), - runner=ModelRunner( - model=grok_1_model, - bs_per_device=0.125, - checkpoint_path=CKPT_PATH, - ), - name="local", - load=CKPT_PATH, - tokenizer_path="./tokenizer.model", - local_mesh_config=(1, 8), - between_hosts_config=(1, 1), - ) - inference_runner.initialize() - gen = inference_runner.run() - - inp = "The answer to life the universe and everything is of course" - print(f"Output for prompt: {inp}", sample_from_model(gen, inp, max_len=100, temperature=0.01)) - + try: + logging.info("Initializing model...") + model = initialize_model() + + logging.info("Setting up inference runner...") + inference_runner = initialize_inference_runner(model) + + prompt = "The answer to life the universe and everything is of course" + logging.info("Generating output...") + output = generate_text(prompt, inference_runner) + + encrypted_output = encrypt_message(output) + decrypted_output = decrypt_message(encrypted_output) + + logging.info(f"Output for prompt: {prompt}") + print(decrypted_output) + except Exception as e: + logging.error(f"An error occurred: {e}") if __name__ == "__main__": - logging.basicConfig(level=logging.INFO) main() +