Update README.md
This commit is contained in:
parent
052c94531e
commit
108f155a70
284
README.md
284
README.md
@ -3,199 +3,161 @@ library_name: transformers
|
|||||||
tags: []
|
tags: []
|
||||||
---
|
---
|
||||||
|
|
||||||
# Model Card for Model ID
|
MusicLang : Controllable Symbolic Music Generation
|
||||||
|
========================================================
|
||||||
|
|
||||||
<!-- Provide a quick summary of what the model is/does. -->
|
![MusicLang logo](https://github.com/MusicLang/musiclang/blob/main/documentation/images/MusicLang.png?raw=true "MusicLang")
|
||||||
|
|
||||||
|
|
||||||
|
🎶 <b> You want to generate music that you can export to your favourite DAW in MIDI ?</b>
|
||||||
|
|
||||||
## Model Details
|
|
||||||
|
|
||||||
### Model Description
|
🎛️ <b> You want to control the chord progression of the generated music ? </b>
|
||||||
|
|
||||||
<!-- Provide a longer summary of what this model is. -->
|
|
||||||
|
|
||||||
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
🚀 <b> You need to run it fast on your laptop without a gpu ?</b>
|
||||||
|
|
||||||
- **Developed by:** [More Information Needed]
|
|
||||||
- **Funded by [optional]:** [More Information Needed]
|
|
||||||
- **Shared by [optional]:** [More Information Needed]
|
|
||||||
- **Model type:** [More Information Needed]
|
|
||||||
- **Language(s) (NLP):** [More Information Needed]
|
|
||||||
- **License:** [More Information Needed]
|
|
||||||
- **Finetuned from model [optional]:** [More Information Needed]
|
|
||||||
|
|
||||||
### Model Sources [optional]
|
Here is MusicLang Predict, your controllable music copilot.
|
||||||
|
|
||||||
<!-- Provide the basic links for the model. -->
|
I just want to try !
|
||||||
|
--------------------
|
||||||
|
|
||||||
- **Repository:** [More Information Needed]
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MA2mek826c05BjbWk2nRkVv2rW7kIU_S?usp=sharing)
|
||||||
- **Paper [optional]:** [More Information Needed]
|
|
||||||
- **Demo [optional]:** [More Information Needed]
|
|
||||||
|
|
||||||
## Uses
|
Go to our Colab, we have a lot of cool examples. From generating creative musical ideas to continuing a song with a specified chord progression.
|
||||||
|
|
||||||
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
I am more serious about it
|
||||||
|
--------------------------
|
||||||
|
|
||||||
### Direct Use
|
Install the musiclang-predict package :
|
||||||
|
|
||||||
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
```bash
|
||||||
|
pip install musiclang_predict
|
||||||
|
```
|
||||||
|
|
||||||
[More Information Needed]
|
Then open your favourite notebook and start generating music in a few lines :
|
||||||
|
|
||||||
### Downstream Use [optional]
|
```python
|
||||||
|
from musiclang_predict import MusicLangPredictor
|
||||||
|
nb_tokens = 1024
|
||||||
|
temperature = 0.9 # Don't go over 1.0, at your own risks !
|
||||||
|
top_p = 1.0 # <=1.0, Usually 1 best to get not too much repetitive music
|
||||||
|
seed = 16 # change here to change result, or set to 0 to unset seed
|
||||||
|
|
||||||
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
ml = MusicLangPredictor('musiclang/musiclang-v2') # Only available model for now
|
||||||
|
|
||||||
[More Information Needed]
|
score = ml.predict(
|
||||||
|
nb_tokens=nb_tokens, # 1024 tokens ~ 25s of music (depending of the number of instruments generated)
|
||||||
|
temperature=temperature,
|
||||||
|
topp=top_p,
|
||||||
|
rng_seed=seed # change here to change result, or set to 0 to unset seed
|
||||||
|
)
|
||||||
|
score.to_midi('test.mid') # Open that file in your favourite DAW, score editor or even in VLC
|
||||||
|
```
|
||||||
|
|
||||||
### Out-of-Scope Use
|
You were talking about controlling the chord progression ?
|
||||||
|
----------------------------------------------------------
|
||||||
|
|
||||||
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
You had a specific harmony in mind am I right ?
|
||||||
|
That's why we allow a fine control over the chord progression of the generated music.
|
||||||
|
Just specify it as a string like below, choose a time signature and let the magic happen.
|
||||||
|
|
||||||
[More Information Needed]
|
```python
|
||||||
|
from musiclang_predict import MusicLangPredictor
|
||||||
|
|
||||||
## Bias, Risks, and Limitations
|
# Control the chord progression
|
||||||
|
# Chord qualities available : M, m, 7, m7b5, sus2, sus4, m7, M7, dim, dim0.
|
||||||
|
# You can also specify the bass if it belongs to the chord (eg : Bm/D)
|
||||||
|
chord_progression = "Am CM Dm E7 Am" # 1 chord = 1 bar
|
||||||
|
time_signature = (4, 4) # 4/4 time signature, don't be too crazy here
|
||||||
|
nb_tokens = 1024
|
||||||
|
temperature = 0.8
|
||||||
|
top_p = 1.0
|
||||||
|
seed = 42
|
||||||
|
|
||||||
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
ml = MusicLangPredictor('musiclang/musiclang-v2')
|
||||||
|
|
||||||
[More Information Needed]
|
score = ml.predict_chords(
|
||||||
|
chord_progression,
|
||||||
|
time_signature=time_signature,
|
||||||
|
temperature=temperature,
|
||||||
|
topp=top_p,
|
||||||
|
rng_seed=seed # set to 0 to unset seed
|
||||||
|
)
|
||||||
|
score.to_midi('test.mid', tempo=120, time_signature=(4, 4))
|
||||||
|
```
|
||||||
|
|
||||||
### Recommendations
|
Disclaimer : The chord progression is not guaranteed to be exactly the same as the one you specified. It's a generative model after all.
|
||||||
|
Usually it will happen when you use an exotic chord progression and if you set a high temperature.
|
||||||
|
|
||||||
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
|
||||||
|
|
||||||
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
That's cool but I have my music to plug in ...
|
||||||
|
------------------------------------------------
|
||||||
|
|
||||||
## How to Get Started with the Model
|
Don't worry, we got you covered. You can use your music as a template to generate new music.
|
||||||
|
Let's continue some Bach music with a chord progression he could have used :
|
||||||
|
```python
|
||||||
|
from musiclang_predict import MusicLangPredictor
|
||||||
|
from musiclang_predict import corpus
|
||||||
|
|
||||||
Use the code below to get started with the model.
|
song_name = 'bach_847' # corpus.list_corpus() to get the list of available songs
|
||||||
|
chord_progression = "Cm C7/E Fm F#dim G7 Cm"
|
||||||
|
nb_tokens = 1024
|
||||||
|
temperature = 0.8
|
||||||
|
top_p = 1.0
|
||||||
|
seed = 3666
|
||||||
|
|
||||||
[More Information Needed]
|
ml = MusicLangPredictor('musiclang/musiclang-v2')
|
||||||
|
|
||||||
## Training Details
|
score = ml.predict_chords(
|
||||||
|
chord_progression,
|
||||||
|
score=corpus.get_midi_path_from_corpus(song_name),
|
||||||
|
time_signature=(4, 4),
|
||||||
|
nb_tokens=1024,
|
||||||
|
prompt_chord_range=(0,4),
|
||||||
|
temperature=temperature,
|
||||||
|
topp=top_p,
|
||||||
|
rng_seed=seed # set to 0 to unset seed
|
||||||
|
)
|
||||||
|
|
||||||
### Training Data
|
score.to_midi('test.mid', tempo=110, time_signature=(4, 4))
|
||||||
|
```
|
||||||
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
|
||||||
|
What's coming next ?
|
||||||
[More Information Needed]
|
---------------------
|
||||||
|
|
||||||
### Training Procedure
|
We are working on a lot of cool features, some are already encoded in the model :
|
||||||
|
- A control over the instruments used in each bar and their properties (note density, pitch range, average velocity)
|
||||||
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
- Some performances improvements over the inference C script
|
||||||
|
- A faster distilled model for real-time generation that can be embedded in plugins or mobile applications
|
||||||
#### Preprocessing [optional]
|
- An integration into a DAW as a plugin
|
||||||
|
- Some specialized smaller models depending on our user's needs
|
||||||
[More Information Needed]
|
|
||||||
|
How does that work ?
|
||||||
|
---------------------
|
||||||
#### Training Hyperparameters
|
|
||||||
|
If you want to learn more about how we are moving toward symbolic music generation, go to our [technical blog](https://musiclang.github.io/).
|
||||||
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
The tokenization, the model are described in great details.
|
||||||
|
|
||||||
#### Speeds, Sizes, Times [optional]
|
We are using a LLAMA2 architecture (many thanks to Andrej Karpathy awesome [llama2.c](https://github.com/karpathy/llama2.c)), trained on a large dataset of midi files (The CC0 licensed [LAKH](https://colinraffel.com/projects/lmd/)).
|
||||||
|
We heavily rely on preprocessing the midi files to get an enriched tokenization that describe chords & scale for each bar.
|
||||||
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
The is also helpful for normalizing melodies relative to the current chord/scale.
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
Contributing & Contact us
|
||||||
## Evaluation
|
-------------------------
|
||||||
|
|
||||||
<!-- This section describes the evaluation protocols and provides the results. -->
|
We are looking for contributors to help us improve the model, the tokenization, the performances and the documentation.
|
||||||
|
If you are interested in this project, open an issue, a pull request, or even [contact us directly](https://www.musiclang.io/contact).
|
||||||
### Testing Data, Factors & Metrics
|
|
||||||
|
License
|
||||||
#### Testing Data
|
-------
|
||||||
|
|
||||||
<!-- This should link to a Dataset Card if possible. -->
|
Specific licenses applies to our models. If you would like to use the model in your product, please
|
||||||
|
[contact us](https://www.musiclang.io/contact). We are looking forward to hearing from you !
|
||||||
[More Information Needed]
|
MusicLang Predict is licensed under the GPL-3.0 License.
|
||||||
|
|
||||||
#### Factors
|
The MusicLang base language package on which the model rely ([musiclang package](https://github.com/musiclang/musiclang)) is licensed under the BSD 3-Clause License.
|
||||||
|
|
||||||
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
#### Metrics
|
|
||||||
|
|
||||||
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
### Results
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
#### Summary
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Model Examination [optional]
|
|
||||||
|
|
||||||
<!-- Relevant interpretability work for the model goes here -->
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
## Environmental Impact
|
|
||||||
|
|
||||||
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
|
||||||
|
|
||||||
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
|
||||||
|
|
||||||
- **Hardware Type:** [More Information Needed]
|
|
||||||
- **Hours used:** [More Information Needed]
|
|
||||||
- **Cloud Provider:** [More Information Needed]
|
|
||||||
- **Compute Region:** [More Information Needed]
|
|
||||||
- **Carbon Emitted:** [More Information Needed]
|
|
||||||
|
|
||||||
## Technical Specifications [optional]
|
|
||||||
|
|
||||||
### Model Architecture and Objective
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
### Compute Infrastructure
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
#### Hardware
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
#### Software
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
## Citation [optional]
|
|
||||||
|
|
||||||
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
|
||||||
|
|
||||||
**BibTeX:**
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
**APA:**
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
## Glossary [optional]
|
|
||||||
|
|
||||||
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
## More Information [optional]
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
## Model Card Authors [optional]
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
## Model Card Contact
|
|
||||||
|
|
||||||
[More Information Needed]
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user