grok-1/pytorch/modeling_grok_1.py
2024-03-20 10:22:10 +00:00

402 lines
15 KiB
Python

from configuration_grok_1 import Grok1Config
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from typing import Optional, NamedTuple, List
class TiedWeightEmbedding(nn.Embedding):
"""Module for tied weight embedding."""
def __init__(
self,
config: Grok1Config,
):
super().__init__(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
padding_idx=config.pad_token_id,
)
def decode(
self,
inputs: torch.Tensor,
) -> torch.Tensor:
return torch.matmul(inputs, self.weight.T)
class Gating(nn.Module):
"""Gating module for spare MoE expert selection."""
def __init__(
self,
config: Grok1Config,
):
super().__init__()
self.router_weights = nn.Linear(config.hidden_size, config.num_local_experts, bias=False)
def forward(
self,
inputs: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
):
routing_logits = self.router_weights(inputs)
routing_probs = F.softmax(routing_logits, dim=-1, dtype=torch.float32)
if padding_mask is not None:
# [batch * seq, expert]
routing_probs = routing_probs * padding_mask.view(-1).unsqueeze(-1)
# Note routing_probs is using float32.
return routing_probs, routing_logits
class MLPExpert(nn.Module):
"""MLP expert module for sparse MoE."""
def __init__(
self,
config: Grok1Config,
):
super().__init__()
self.w1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.v = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(
self,
inputs: torch.Tensor,
) -> torch.Tensor:
h_w1 = self.act_fn(self.w1(inputs))
h_v = self.v(inputs)
h_dense = self.dense(h_w1 * h_v)
return h_dense
class SparseMoEMLP(nn.Module):
"""Sparse MoE MLP module."""
def __init__(
self,
config: Grok1Config,
):
super().__init__()
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
self.gating = Gating(config)
self.experts = nn.ModuleList([MLPExpert(config) for _ in range(self.num_experts)])
def forward(
self,
hidden_states: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# Get routing probabilities and selected experts.
routing_probs, routing_logits = self.gating(hidden_states, padding_mask)
routing_probs, selected_experts = torch.topk(routing_probs, self.top_k, dim=-1)
routing_probs = routing_probs / routing_probs.sum(dim=-1, keepdim=True)
# Now routing_probs is using the hidden_states' dtype instead of float32.
routing_probs = routing_probs.to(hidden_states.dtype)
# Initialize output hidden states.
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype,
device=hidden_states.device,
)
# Create expert mask.
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over experts and compute their contributions.
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
top_x_list = top_x.tolist()
idx_list = idx.tolist()
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_probs[top_x_list, idx_list, None]
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, routing_logits
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
class RotaryPositionalEmbedding(nn.Module):
def __init__(
self,
dim: int,
base_exponent: int = int(1e4),
):
super().__init__()
self.dim = dim
self.base_exponent = base_exponent
assert self.dim % 2 == 0, "Embedding dimension must be even for rotary embeddings."
def forward(
self,
x: torch.Tensor,
seq_dim: int,
offset: torch.Tensor,
const_position: Optional[int] = None,
t: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Compute the per-dimension frequencies.
dtype = x.dtype
exponents = torch.arange(0, self.dim, 2, dtype=torch.float32, device=x.device)
inv_freq = (self.base_exponent ** (exponents / self.dim)).reciprocal()
if not isinstance(offset, torch.Tensor):
offset = torch.tensor(offset, dtype=torch.float32, device=x.device)
if offset.dim() == 0:
# Offset can be a scalar or one offset per batch element.
offset = offset.unsqueeze(0)
# Compute the per-element phase (to pass into sin and cos).
if const_position is not None:
t = const_position * torch.ones(
(1, x.shape[seq_dim]),
dtype=torch.float32,
device=x.device,
)
elif t is None:
t = torch.arange(x.shape[seq_dim], dtype=torch.float32, device=x.device)
t = t.unsqueeze(0) + offset.unsqueeze(-1)
phase = torch.einsum("bi,j->bij", t, inv_freq)
phase = torch.cat([phase, phase], dim=-1)[:, :, None, :]
x_rotated = x * phase.cos() + rotate_half(x) * phase.sin()
return x_rotated.to(dtype)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return self.weight * hidden_states.to(input_dtype)
class KVMemory(NamedTuple):
k: Optional[torch.Tensor]
v: Optional[torch.Tensor]
step: Optional[torch.Tensor]
def init_layer_memories(
batch_size: int,
sequence_len: int,
num_kv_heads: int,
key_size: int,
num_layers: int,
step: Optional[torch.Tensor] = None,
dtype: torch.dtype = torch.bfloat16,
device: str = "cpu",
):
if step is None:
step = torch.zeros(batch_size, dtype=torch.int32, device=device)
return [
KVMemory(
k=torch.zeros(batch_size, sequence_len, num_kv_heads, key_size, dtype=dtype, device=device),
v=torch.zeros(batch_size, sequence_len, num_kv_heads, key_size, dtype=dtype, device=device),
step=step,
)
for _ in range(num_layers)
]
class MultiHeadAttention(nn.Module):
def __init__(self, config: Grok1Config):
super().__init__()
self.num_q_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.key_size = config.hidden_size // config.num_attention_heads
self.value_size = self.key_size
self.attn_output_multiplier = config.attn_output_multiplier
self.q_proj = nn.Linear(config.hidden_size, self.num_q_heads * self.key_size, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.key_size, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.value_size, bias=False)
self.out_proj = nn.Linear(self.num_q_heads * self.value_size, config.hidden_size, bias=False)
self.rotary_pos_emb = RotaryPositionalEmbedding(self.key_size, base_exponent=config.rope_theta)
def forward(
self,
hidden_states: torch.Tensor,
mask: Optional[torch.Tensor] = None,
layer_memory: Optional[KVMemory] = None,
):
batch_size, seq_len, _ = hidden_states.shape
query = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_q_heads, self.key_size)
key = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_kv_heads, self.key_size)
value = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_kv_heads, self.value_size)
query = self.rotary_pos_emb(query, seq_dim=1, offset=layer_memory.step if layer_memory else 0)
key = self.rotary_pos_emb(key, seq_dim=1, offset=layer_memory.step if layer_memory else 0)
if layer_memory:
key = torch.cat([layer_memory.k, key], dim=1)
value = torch.cat([layer_memory.v, value], dim=1)
new_step = layer_memory.step + seq_len
memory_mask = torch.arange(key.shape[1], device=key.device) < new_step[:, None]
memory_mask = memory_mask[:, None, None, :]
if mask is not None:
mask = mask * memory_mask
else:
mask = memory_mask
new_memory = KVMemory(k=key, v=value, step=new_step)
else:
new_memory = None
query = query.view(batch_size, seq_len, self.num_kv_heads, self.num_q_heads // self.num_kv_heads, self.key_size)
attn_logits = torch.einsum("...thHd,...Thd->...hHtT", query, key).to(torch.float32)
attn_logits *= self.attn_output_multiplier
max_attn_val = torch.tensor(30.0, dtype=attn_logits.dtype, device=attn_logits.device)
attn_logits = max_attn_val * torch.tanh(attn_logits / max_attn_val)
if mask is not None:
mask = mask[:, :, None, :, :]
attn_logits = torch.where(mask, attn_logits, torch.full_like(attn_logits, float("-inf")))
attn_weights = F.softmax(attn_logits, dim=-1).to(query.dtype)
attn = torch.einsum("...hHtT,...Thd->...thHd", attn_weights, value)
attn = attn.reshape(batch_size, seq_len, -1)
attn = self.out_proj(attn)
return attn, new_memory
class Decoder(nn.Module):
def __init__(self, config: Grok1Config):
super().__init__()
self.num_layers = config.num_hidden_layers
self.attention = MultiHeadAttention(config)
self.norm1 = RMSNorm(config.hidden_size)
self.norm2 = RMSNorm(config.hidden_size)
self.norm3 = RMSNorm(config.hidden_size)
self.norm4 = RMSNorm(config.hidden_size)
if config.num_local_experts > 1:
self.mlp = SparseMoEMLP(config)
else:
self.mlp = MLPExpert(config)
def forward(
self,
hidden_states: torch.Tensor,
mask: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
layer_memory: Optional[KVMemory] = None,
):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
attn_output, new_memory = self.attention(hidden_states, mask, layer_memory)
attn_output = self.norm2(attn_output)
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.norm3(hidden_states)
if isinstance(self.mlp, SparseMoEMLP):
mlp_output, routing_logits = self.mlp(hidden_states, padding_mask)
else:
mlp_output = self.mlp(hidden_states)
routing_logits = None
mlp_output = self.norm4(mlp_output)
hidden_states = residual + mlp_output
return hidden_states, new_memory, routing_logits
class Grok1PreTrainedModel(PreTrainedModel):
config_class = Grok1Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Decoder"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Grok1ForCausalLM(Grok1PreTrainedModel):
def __init__(self, config: Grok1Config):
super().__init__(config)
self.embedding = TiedWeightEmbedding(self.config)
self.layers = nn.ModuleList([Decoder(self.config) for _ in range(self.config.num_hidden_layers)])
self.norm = RMSNorm(self.config.hidden_size)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
memory: Optional[List[KVMemory]] = None,
last_hid_only: bool = False,
length: Optional[torch.Tensor] = None,
):
batch_size, seq_len = input_ids.shape
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
padding_mask = attention_mask.view(batch_size, seq_len)
causal_mask = torch.tril(torch.ones(1, 1, seq_len, seq_len, dtype=torch.bool, device=input_ids.device))
mask = padding_mask[:, None, None, :] * causal_mask
hidden_states = self.embedding(input_ids) * self.config.embedding_multiplier_scale
kv_memories = []
for i, layer in enumerate(self.layers):
layer_memory = memory[i] if memory else None
hidden_states, new_memory, routing_logits = layer(
hidden_states,
mask,
padding_mask,
layer_memory,
)
kv_memories.append(new_memory)
hidden_states = self.norm(hidden_states)
if last_hid_only:
last_step = torch.maximum(torch.sum(padding_mask, dim=1) - 1, torch.tensor(0, device=input_ids.device))
hidden_states = hidden_states[torch.arange(batch_size, device=input_ids.device), last_step]
elif length is not None:
last_step = torch.maximum(length - 1, torch.tensor(0, device=input_ids.device))
hidden_states = hidden_states[torch.arange(batch_size, device=input_ids.device), last_step]
hidden_states = hidden_states.unsqueeze(1)
logits = self.embedding.decode(hidden_states) * torch.tensor(self.config.output_multiplier_scale, dtype=hidden_states.dtype, device=hidden_states.device)
return logits, kv_memories