mirror of
https://github.com/xai-org/grok-1.git
synced 2024-11-26 21:49:53 +03:00
1399 lines
45 KiB
Python
1399 lines
45 KiB
Python
# Copyright 2024 X.AI Corp.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import functools
|
|
import logging
|
|
import re
|
|
from dataclasses import dataclass
|
|
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
|
|
|
|
import haiku as hk
|
|
import jax
|
|
import jax.experimental.maps
|
|
import jax.numpy as jnp
|
|
from jax import config, tree_util
|
|
from jax.experimental.shard_map import shard_map
|
|
from jax.lax import with_sharding_constraint as pjit_sharding_constraint
|
|
from jax.sharding import PartitionSpec
|
|
from jax.sharding import PartitionSpec as P
|
|
|
|
config.update("jax_spmd_mode", "allow_all")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
rank_logger = logging.getLogger("rank")
|
|
|
|
|
|
@dataclass
|
|
class QuantizedWeight8bit:
|
|
weight: jnp.array
|
|
scales: jnp.array
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.weight.shape
|
|
|
|
|
|
tree_util.register_pytree_node(
|
|
QuantizedWeight8bit,
|
|
lambda qw: ([qw.weight, qw.scales], ()),
|
|
lambda _, children: QuantizedWeight8bit(children[0], children[1]),
|
|
)
|
|
|
|
|
|
class TrainingState(NamedTuple):
|
|
"""Container for the training state."""
|
|
|
|
params: hk.Params
|
|
|
|
|
|
def _match(qs, ks):
|
|
"""Return True if regexes in qs match any window of strings in tuple ks."""
|
|
# compile regexes and force complete match
|
|
qts = tuple(map(lambda x: re.compile(x + "$"), qs))
|
|
for i in range(len(ks) - len(qs) + 1):
|
|
matches = [x.match(y) for x, y in zip(qts, ks[i:])]
|
|
if matches and all(matches):
|
|
return True
|
|
return False
|
|
|
|
|
|
def with_sharding_constraint(x, constraint):
|
|
if jax.experimental.maps.thread_resources.env.physical_mesh.empty:
|
|
return x
|
|
else:
|
|
return pjit_sharding_constraint(x, constraint)
|
|
|
|
|
|
def cast_bfloat16(x):
|
|
if x.dtype.kind == "f":
|
|
return x.astype(jnp.bfloat16)
|
|
else:
|
|
return x
|
|
|
|
|
|
def ffn_size(emb_size, widening_factor):
|
|
_ffn_size = int(widening_factor * emb_size) * 2 // 3
|
|
_ffn_size = _ffn_size + (8 - _ffn_size) % 8 # ensure it's a multiple of 8
|
|
logger.debug(f"emd_size: {emb_size} adjusted ffn_size: {_ffn_size}")
|
|
return _ffn_size
|
|
|
|
|
|
def apply_rules(rules):
|
|
def _apply_rules(path, value):
|
|
del value # Unused.
|
|
|
|
path_list = [str(i.key).split("/") for i in path if isinstance(i, jax.tree_util.DictKey)]
|
|
flattened_path = jax.tree_util.tree_flatten(path_list)[0]
|
|
|
|
for rule, replacement in rules:
|
|
if _match(rule, flattened_path):
|
|
if isinstance(replacement, PartitionSpec):
|
|
if "layer_stack" in flattened_path:
|
|
replacement = PartitionSpec(None, *replacement)
|
|
rank_logger.debug(f"Apply {replacement} to {flattened_path} with rule {rule}")
|
|
return replacement
|
|
rank_logger.info(f"{flattened_path} no matching found!")
|
|
return None
|
|
|
|
return _apply_rules
|
|
|
|
|
|
TRANSFORMER_PARTITION_RULES = [
|
|
# attention
|
|
(("multi_head_attention", "(query|key|value)", "w"), P("data", "model")),
|
|
(("multi_head_attention", "(query|key|value)", "b"), P(None)),
|
|
(("multi_head_attention", "linear", "w"), P("model", "data")),
|
|
(("multi_head_attention", "linear", "b"), P(None)),
|
|
# mlp
|
|
((r"decoder_layer_[0-9]+", "linear", "w"), P("data", "model")),
|
|
((r"decoder_layer_[0-9]+", "linear", "b"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "linear_v", "w"), P("data", "model")),
|
|
((r"decoder_layer_[0-9]+", "linear_v", "b"), P(None)),
|
|
(
|
|
(r"decoder_layer_[0-9]+", "linear_1", "w"),
|
|
P(
|
|
"model",
|
|
"data",
|
|
),
|
|
),
|
|
((r"decoder_layer_[0-9]+", "linear_1", "b"), P(None)),
|
|
# layer norms
|
|
((r"decoder_layer_[0-9]+", "layer_norm", "offset"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "layer_norm", "scale"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "layer_norm_1", "offset"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "layer_norm_1", "scale"), P(None)),
|
|
# rms norms
|
|
((r"decoder_layer_[0-9]+", "rms_norm", "scale"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "rms_norm_1", "scale"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "rms_norm_2", "scale"), P(None)),
|
|
((r"decoder_layer_[0-9]+", "rms_norm_3", "scale"), P(None)),
|
|
# router
|
|
(("router", "w"), P("data")),
|
|
# moe mlp
|
|
(("moe", "linear", "w"), P(None, "data", "model")),
|
|
(("moe", "linear", "b"), P(None)),
|
|
(("moe", "linear_v", "w"), P(None, "data", "model")),
|
|
(("moe", "linear_v", "b"), P(None)),
|
|
(("moe", "linear_1", "w"), P(None, "model", "data")),
|
|
(("moe", "linear_1", "b"), P(None)),
|
|
# layer norms
|
|
(("moe", "layer_norm", "offset"), P(None)),
|
|
(("moe", "layer_norm", "scale"), P(None)),
|
|
(("moe", "layer_norm_1", "offset"), P(None)),
|
|
(("moe", "layer_norm_1", "scale"), P(None)),
|
|
# rms norms
|
|
(("moe", "rms_norm", "scale"), P(None)),
|
|
(("moe", "rms_norm_1", "scale"), P(None)),
|
|
(("moe", "rms_norm_2", "scale"), P(None)),
|
|
(("moe", "rms_norm_3", "scale"), P(None)),
|
|
]
|
|
|
|
LM_PARTITION_RULES = [
|
|
# Embedding layer.
|
|
(
|
|
("language_model", "positional_embeddings"),
|
|
P(None, ("data", "model")),
|
|
),
|
|
(
|
|
("language_model", "in_out_embed", "embeddings"),
|
|
P(None, ("data", "model")),
|
|
),
|
|
# Final RMSNorm.
|
|
(("language_model", "rms_norm"), P(None)),
|
|
]
|
|
TOP_K = 8
|
|
|
|
|
|
class KVMemory(NamedTuple):
|
|
k: Optional[jax.Array]
|
|
v: Optional[jax.Array]
|
|
step: Optional[jax.Array]
|
|
|
|
|
|
def init_layer_memories(
|
|
batch_size: int,
|
|
sequence_len: int,
|
|
num_kv_heads: int,
|
|
key_size: int,
|
|
num_layers: int,
|
|
step: Optional[jax.Array] = None,
|
|
dtype=jnp.bfloat16,
|
|
):
|
|
return [
|
|
KVMemory(
|
|
k=jnp.zeros((batch_size, sequence_len, num_kv_heads, key_size), dtype=dtype),
|
|
v=jnp.zeros((batch_size, sequence_len, num_kv_heads, key_size), dtype=dtype),
|
|
step=step,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
|
|
|
|
class Memory(NamedTuple):
|
|
# Self-attention key/value cache.
|
|
layers: List[KVMemory]
|
|
|
|
|
|
class Router(hk.Module):
|
|
def __init__(
|
|
self,
|
|
num_selected_experts: int,
|
|
data_axis: Union[str, Tuple[str, ...]] = "data",
|
|
model_axis: Union[str, Tuple[str, ...]] = "model",
|
|
shard_activations: bool = False,
|
|
mesh: Any = None,
|
|
name: str = "router",
|
|
):
|
|
super().__init__(name)
|
|
self.shard_activations = shard_activations
|
|
self.data_axis = data_axis
|
|
self.model_axis = model_axis
|
|
self.mesh = mesh
|
|
self.num_selected_experts = num_selected_experts
|
|
|
|
def compute_routing_prob(
|
|
self, inputs: jax.Array, padding_mask: Optional[jax.Array], num_experts: int
|
|
):
|
|
return self._compute_routing_prob(inputs, padding_mask, num_experts)
|
|
|
|
@hk.transparent
|
|
def _compute_routing_prob(
|
|
self,
|
|
inputs: jax.Array,
|
|
padding_mask: Optional[jax.Array],
|
|
num_experts: int,
|
|
):
|
|
# Using fp32 for the routing prob computation.
|
|
inputs = jax.lax.convert_element_type(inputs, jnp.float32)
|
|
|
|
# [batch_size, seq_len, num_experts]
|
|
routing_logits = self._router_weights(inputs, num_experts, sharding=P("data"))
|
|
assert routing_logits.dtype == jnp.float32
|
|
routing_probs = jax.nn.softmax(routing_logits)
|
|
|
|
if padding_mask is not None:
|
|
routing_probs *= padding_mask
|
|
|
|
return routing_probs, routing_logits, 0
|
|
|
|
@hk.transparent
|
|
def _router_weights(
|
|
self,
|
|
x: jax.Array,
|
|
num_experts: int,
|
|
sharding: Optional[P] = None,
|
|
):
|
|
fprop_dtype = x.dtype
|
|
if not x.shape:
|
|
raise ValueError("Input must not be scalar.")
|
|
|
|
input_size = self.input_size = x.shape[-1]
|
|
w = hk.get_parameter(
|
|
"w", [input_size, num_experts], jnp.float32, init=hk.initializers.Constant(0)
|
|
)
|
|
if sharding:
|
|
w = with_sharding_constraint(w, sharding)
|
|
|
|
out = jnp.dot(x, w.astype(fprop_dtype))
|
|
return out
|
|
|
|
|
|
class MoELayer(hk.Module):
|
|
def __init__(
|
|
self,
|
|
num_experts: int,
|
|
layer_fn: Callable,
|
|
router: Router,
|
|
mesh: Any = None,
|
|
shard_activations: bool = False,
|
|
data_axis: Union[str, Tuple[str, ...]] = "data",
|
|
model_axis: Union[str, Tuple[str, ...]] = "model",
|
|
name: Optional[str] = "moe",
|
|
):
|
|
super().__init__(name)
|
|
self.num_experts = num_experts
|
|
self.layer_fn = layer_fn
|
|
self.router = router
|
|
self.mesh = mesh
|
|
self.shard_activations = shard_activations
|
|
self.data_axis = data_axis
|
|
self.model_axis = model_axis
|
|
|
|
@hk.transparent
|
|
def _inference_call(self, inputs: jax.Array, padding_mask: Optional[jax.Array] = None):
|
|
routing_probs, _, _ = self.router.compute_routing_prob(
|
|
inputs, padding_mask, self.num_experts
|
|
)
|
|
expert_gate, expert_index = jax.lax.top_k(routing_probs, k=self.router.num_selected_experts)
|
|
tmp = jnp.reshape(inputs, (inputs.shape[0] * inputs.shape[1], inputs.shape[2]))
|
|
broad_inputs = jnp.tile(tmp[:, jnp.newaxis, :], (1, self.router.num_selected_experts, 1))
|
|
broad_inputs = jnp.reshape(
|
|
broad_inputs, (broad_inputs.shape[0] * broad_inputs.shape[1], broad_inputs.shape[2])
|
|
)
|
|
init_fn, _ = hk.transform(self.layer_fn)
|
|
vmapped_init_fn = jax.vmap(init_fn, in_axes=0, out_axes=0)
|
|
lifted_init_fn = hk.experimental.transparent_lift(vmapped_init_fn)
|
|
# Fetch the vmapped params of the DenseBlock.
|
|
params = lifted_init_fn(
|
|
jax.random.split(jax.random.PRNGKey(1), self.num_experts),
|
|
jnp.zeros((self.num_experts, 1, 1, inputs.shape[-1])),
|
|
)
|
|
|
|
# Index and prob are in the shape [m, 2] indicating which token assigned to which experts.
|
|
# b: num_expert
|
|
# m: token or sequence dim
|
|
# k: input embed dim
|
|
# n: output embed dim
|
|
# e: the number of experts chosen for each token
|
|
@functools.partial(
|
|
shard_map,
|
|
mesh=self.mesh,
|
|
in_specs=(
|
|
P(self.data_axis, None),
|
|
P(None, None, self.model_axis),
|
|
P(None, None, self.model_axis),
|
|
P(None),
|
|
P(None),
|
|
),
|
|
out_specs=P(self.data_axis, self.model_axis),
|
|
check_rep=False,
|
|
)
|
|
def moe_slow_matmul1(input, weight, scales, index, prob):
|
|
weight = weight * scales
|
|
one_hot_indices = jax.nn.one_hot(index.reshape(-1), 8, axis=0)
|
|
all_expert_output = jnp.einsum("mk,bkn->bmn", input, weight)
|
|
output = jnp.einsum("bm,bmn->mn", one_hot_indices, all_expert_output)
|
|
return output
|
|
|
|
@functools.partial(
|
|
shard_map,
|
|
mesh=self.mesh,
|
|
in_specs=(
|
|
P(self.data_axis, self.model_axis),
|
|
P(None, self.model_axis, None),
|
|
P(None, self.model_axis, None),
|
|
P(None),
|
|
P(None),
|
|
),
|
|
out_specs=P(self.data_axis, None),
|
|
check_rep=False,
|
|
)
|
|
def moe_slow_matmul2(input, weight, scales, index, prob):
|
|
weight = weight * scales
|
|
one_hot_indices = jax.nn.one_hot(index.reshape(-1), 8, axis=0)
|
|
all_expert_output = jnp.einsum("mk,bkn->bmn", input, weight)
|
|
output = jnp.einsum("bm,bmn->mn", one_hot_indices, all_expert_output)
|
|
return jax.lax.psum(output, axis_name="model")
|
|
|
|
if hasattr(params["linear"]["w"], "scales"):
|
|
x = moe_slow_matmul1(
|
|
broad_inputs,
|
|
params["linear_v"]["w"].weight,
|
|
params["linear_v"]["w"].scales,
|
|
expert_index,
|
|
expert_gate,
|
|
)
|
|
y = moe_slow_matmul1(
|
|
broad_inputs,
|
|
params["linear"]["w"].weight,
|
|
params["linear"]["w"].scales,
|
|
expert_index,
|
|
expert_gate,
|
|
)
|
|
y = jax.nn.gelu(y)
|
|
out = moe_slow_matmul2(
|
|
x * y,
|
|
params["linear_1"]["w"].weight,
|
|
params["linear_1"]["w"].scales,
|
|
expert_index,
|
|
expert_gate,
|
|
)
|
|
out = jnp.reshape(
|
|
out,
|
|
[
|
|
inputs.shape[0],
|
|
inputs.shape[1],
|
|
self.router.num_selected_experts,
|
|
out.shape[-1],
|
|
],
|
|
)
|
|
out = expert_gate[:, :, :, None].astype(jnp.bfloat16) * out
|
|
out = jnp.sum(out, axis=2)
|
|
out = out.astype(jnp.bfloat16)
|
|
else:
|
|
# This is only here so that we can construct a valid init_fn with this code.
|
|
return inputs
|
|
return out
|
|
|
|
def __call__(self, inputs: jax.Array, padding_mask: jax.Array):
|
|
return self._inference_call(inputs)
|
|
|
|
|
|
class MHAOutput(NamedTuple):
|
|
"""Outputs of the multi-head attention operation."""
|
|
|
|
embeddings: jax.Array
|
|
memory: Any
|
|
|
|
|
|
class DecoderOutput(NamedTuple):
|
|
embeddings: jax.Array
|
|
memory: Any
|
|
|
|
|
|
class TransformerOutput(NamedTuple):
|
|
embeddings: jax.Array
|
|
memory: Any
|
|
|
|
|
|
@dataclass
|
|
class TransformerConfig:
|
|
emb_size: int
|
|
key_size: int
|
|
num_q_heads: int
|
|
num_kv_heads: int
|
|
num_layers: int
|
|
vocab_size: int = 128 * 1024
|
|
widening_factor: float = 4.0
|
|
|
|
attn_output_multiplier: float = 1.0
|
|
|
|
name: Optional[str] = None
|
|
|
|
num_experts: int = -1
|
|
capacity_factor: float = 1.0
|
|
num_selected_experts: int = 1
|
|
|
|
init_scale: float = 1.0
|
|
shard_activations: bool = False
|
|
|
|
# Used for activation sharding.
|
|
data_axis: Union[str, Tuple[str, ...]] = "data"
|
|
model_axis: Union[str, Tuple[str, ...]] = "model"
|
|
|
|
def __post_init__(self):
|
|
if isinstance(self.data_axis, list):
|
|
self.data_axis = tuple(self.data_axis)
|
|
if isinstance(self.model_axis, list):
|
|
self.model_axis = tuple(self.model_axis)
|
|
|
|
def partition_rules(self):
|
|
return TRANSFORMER_PARTITION_RULES
|
|
|
|
def make(self, mesh=None) -> "Transformer":
|
|
data_axis = tuple(self.data_axis) if isinstance(self.data_axis, list) else self.data_axis
|
|
model_axis = (
|
|
tuple(self.model_axis) if isinstance(self.model_axis, list) else self.model_axis
|
|
)
|
|
|
|
return Transformer(
|
|
num_q_heads=self.num_q_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
widening_factor=self.widening_factor,
|
|
key_size=self.key_size,
|
|
init_scale=self.init_scale,
|
|
mesh=mesh,
|
|
attn_output_multiplier=self.attn_output_multiplier,
|
|
shard_activations=self.shard_activations,
|
|
num_layers=self.num_layers,
|
|
num_experts=self.num_experts,
|
|
num_selected_experts=self.num_selected_experts,
|
|
data_axis=data_axis,
|
|
model_axis=model_axis,
|
|
)
|
|
|
|
def get_memory_sharding(self):
|
|
return Memory(
|
|
layers=[
|
|
KVMemory(
|
|
k=P(self.data_axis, self.model_axis),
|
|
v=P(self.data_axis, self.model_axis),
|
|
step=P(self.data_axis),
|
|
)
|
|
for _ in range(self.num_layers)
|
|
],
|
|
)
|
|
|
|
|
|
def hk_rms_norm(
|
|
x: jax.Array,
|
|
fixed_scale=False,
|
|
sharding=P(None),
|
|
) -> jax.Array:
|
|
"""Applies a unique LayerNorm to x with default settings."""
|
|
ln = RMSNorm(axis=-1, create_scale=not fixed_scale, sharding=sharding)
|
|
return ln(x)
|
|
|
|
|
|
def make_attention_mask(
|
|
query_input: jax.Array,
|
|
key_input: jax.Array,
|
|
pairwise_fn: Callable[..., Any] = jnp.multiply,
|
|
dtype: Any = jnp.bfloat16,
|
|
):
|
|
"""Mask-making helper for attention weights.
|
|
|
|
In case of 1d inputs (i.e., `[batch..., len_q]`, `[batch..., len_kv]`, the
|
|
attention weights will be `[batch..., heads, len_q, len_kv]` and this
|
|
function will produce `[batch..., 1, len_q, len_kv]`.
|
|
|
|
Args:
|
|
query_input: a batched, flat input of query_length size
|
|
key_input: a batched, flat input of key_length size
|
|
pairwise_fn: broadcasting elementwise comparison function
|
|
dtype: mask return dtype
|
|
|
|
Returns:
|
|
A `[batch..., 1, len_q, len_kv]` shaped mask for 1d attention.
|
|
"""
|
|
mask = pairwise_fn(jnp.expand_dims(query_input, axis=-1), jnp.expand_dims(key_input, axis=-2))
|
|
mask = jnp.expand_dims(mask, axis=-3)
|
|
return mask.astype(dtype)
|
|
|
|
|
|
class Linear(hk.Linear):
|
|
def __init__(
|
|
self,
|
|
output_size: int,
|
|
with_bias: bool = True,
|
|
sharding: Optional[P] = None,
|
|
mesh: Any = None,
|
|
name: Optional[str] = None,
|
|
shard_axis: int = 0,
|
|
):
|
|
super().__init__(
|
|
output_size=output_size,
|
|
with_bias=with_bias,
|
|
name=name,
|
|
)
|
|
self.sharding = sharding
|
|
self.mesh = mesh
|
|
self.shard_axis = shard_axis
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: jax.Array,
|
|
) -> jax.Array:
|
|
"""Computes a linear transform of the input."""
|
|
|
|
fprop_dtype = inputs.dtype
|
|
if not inputs.shape:
|
|
raise ValueError("Input must not be scalar.")
|
|
|
|
input_size = self.input_size = inputs.shape[-1]
|
|
output_size = self.output_size
|
|
|
|
w = hk.get_parameter(
|
|
"w", [input_size, output_size], jnp.float32, init=hk.initializers.Constant(0)
|
|
)
|
|
|
|
if hasattr(w, "scales"):
|
|
shape = inputs.shape
|
|
inputs = jnp.reshape(inputs, (-1, shape[-1]))
|
|
|
|
@functools.partial(
|
|
shard_map,
|
|
mesh=self.mesh,
|
|
in_specs=(self.sharding, self.sharding),
|
|
out_specs=self.sharding,
|
|
check_rep=False,
|
|
)
|
|
def mul(w, s):
|
|
return w.astype(s.dtype) * s
|
|
|
|
w = mul(w.weight, w.scales)
|
|
out = jnp.dot(inputs, w.astype(fprop_dtype))
|
|
if self.with_bias:
|
|
b = hk.get_parameter(
|
|
"b", [self.output_size], jnp.float32, init=hk.initializers.Constant(0)
|
|
)
|
|
b = jnp.broadcast_to(b, out.shape)
|
|
out = out + b.astype(fprop_dtype)
|
|
|
|
return out
|
|
|
|
|
|
class RMSNorm(hk.RMSNorm):
|
|
|
|
def __init__(
|
|
self,
|
|
axis: Union[int, Sequence[int], slice],
|
|
eps: float = 1e-5,
|
|
name: Optional[str] = None,
|
|
create_scale: bool = True,
|
|
sharding: Optional[P] = None,
|
|
):
|
|
super().__init__(axis, eps, create_scale=create_scale, name=name)
|
|
self.sharding = sharding
|
|
|
|
def __call__(self, inputs: jax.Array):
|
|
fprop_dtype = inputs.dtype
|
|
param_shape = (inputs.shape[-1],)
|
|
if self.create_scale:
|
|
scale = hk.get_parameter(
|
|
"scale",
|
|
param_shape,
|
|
dtype=jnp.float32,
|
|
init=hk.initializers.Constant(0),
|
|
)
|
|
if self.sharding:
|
|
scale = with_sharding_constraint(scale, self.sharding)
|
|
scale = jnp.broadcast_to(scale.astype(jnp.float32), inputs.shape)
|
|
else:
|
|
scale = 1.0
|
|
inputs = inputs.astype(jnp.float32)
|
|
scale = scale.astype(jnp.float32)
|
|
mean_squared = jnp.mean(jnp.square(inputs), axis=[-1], keepdims=True)
|
|
mean_squared = jnp.broadcast_to(mean_squared, inputs.shape)
|
|
|
|
normed_inputs = inputs * jax.lax.rsqrt(mean_squared + self.eps)
|
|
|
|
outputs = scale * normed_inputs
|
|
|
|
return outputs.astype(fprop_dtype)
|
|
|
|
|
|
def rotate_half(
|
|
x: jax.Array,
|
|
) -> jax.Array:
|
|
"""Obtain the rotated counterpart of each feature"""
|
|
x1, x2 = jnp.split(x, 2, axis=-1)
|
|
return jnp.concatenate((-x2, x1), axis=-1)
|
|
|
|
|
|
class RotaryEmbedding(hk.Module):
|
|
"""Applies rotary embeddings (RoPE) to the input sequence tensor,
|
|
as described in https://arxiv.org/abs/2104.09864.
|
|
|
|
Attributes:
|
|
dim (int): Dimensionality of the feature vectors
|
|
base_exponent (int): Base exponent to compute embeddings from
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
name: Optional[str] = None,
|
|
base_exponent: int = 10000,
|
|
):
|
|
super().__init__(name)
|
|
self.dim = dim
|
|
self.base_exponent = base_exponent
|
|
assert self.dim % 2 == 0
|
|
|
|
def __call__(
|
|
self,
|
|
x: jax.Array,
|
|
seq_dim: int,
|
|
offset: jax.Array,
|
|
const_position: Optional[int] = None,
|
|
t: Optional[jax.Array] = None,
|
|
) -> jax.Array:
|
|
fprop_dtype = x.dtype
|
|
# Compute the per-dimension frequencies
|
|
exponents = jnp.arange(0, self.dim, 2, dtype=jnp.float32)
|
|
inv_freq = jnp.asarray(
|
|
1.0 / (self.base_exponent ** (exponents / self.dim)), dtype=jnp.float32
|
|
)
|
|
|
|
if jnp.shape(offset) == ():
|
|
# Offset can be a scalar or one offset per batch element.
|
|
offset = jnp.expand_dims(offset, 0)
|
|
|
|
# Compute the per element phase (to pass into sin and cos)
|
|
if const_position:
|
|
t = const_position * jnp.ones(
|
|
(
|
|
1,
|
|
x.shape[seq_dim],
|
|
),
|
|
dtype=jnp.float32,
|
|
)
|
|
elif t is None:
|
|
t = jnp.arange(x.shape[seq_dim], dtype=jnp.float32) + jnp.expand_dims(offset, -1)
|
|
phase = jnp.einsum("bi,j->bij", t, inv_freq)
|
|
phase = jnp.tile(phase, reps=(1, 2))[:, :, None, :]
|
|
|
|
x = x * jnp.cos(phase) + rotate_half(x) * jnp.sin(phase)
|
|
x = x.astype(fprop_dtype)
|
|
|
|
return x
|
|
|
|
|
|
class MultiHeadAttention(hk.Module):
|
|
def __init__(
|
|
self,
|
|
num_q_heads: int,
|
|
num_kv_heads: int,
|
|
key_size: int,
|
|
*,
|
|
with_bias: bool = True,
|
|
value_size: Optional[int] = None,
|
|
model_size: Optional[int] = None,
|
|
attn_output_multiplier: 1.0,
|
|
data_axis: Union[str, Tuple[str, ...]] = "data",
|
|
model_axis: Union[str, Tuple[str, ...]] = "model",
|
|
name: Optional[str] = None,
|
|
):
|
|
super().__init__(name=name)
|
|
self.num_q_heads = num_q_heads
|
|
self.num_kv_heads = num_kv_heads
|
|
self.key_size = key_size
|
|
self.value_size = value_size or key_size
|
|
self.model_size = model_size or key_size * num_q_heads
|
|
self.data_axis = data_axis
|
|
self.model_axis = model_axis
|
|
self.attn_output_multiplier = attn_output_multiplier
|
|
self.with_bias = with_bias
|
|
|
|
def __call__(
|
|
self,
|
|
query: jax.Array,
|
|
key: Optional[jax.Array],
|
|
value: Optional[jax.Array],
|
|
mask: Optional[jax.Array] = None,
|
|
kv_memory: Optional[KVMemory] = None,
|
|
mesh: Any = None,
|
|
) -> MHAOutput:
|
|
# In shape hints below, we suppress the leading dims [...] for brevity.
|
|
# Hence e.g. [A, B] should be read in every case as [..., A, B].
|
|
sequence_length = query.shape[1]
|
|
projection = self._linear_projection
|
|
use_memory = False
|
|
if kv_memory is not None:
|
|
if kv_memory.k is None:
|
|
assert kv_memory.v is None
|
|
assert key is not None
|
|
assert value is not None
|
|
else:
|
|
assert kv_memory.v is not None
|
|
use_memory = True
|
|
else:
|
|
assert key is not None
|
|
assert value is not None
|
|
|
|
# Check that the keys and values have consistent batch size and sequence length.
|
|
if not use_memory:
|
|
assert key.shape[:2] == value.shape[:2], f"key/value shape: {key.shape}/{value.shape}"
|
|
|
|
if mask is not None:
|
|
assert mask.ndim == 4
|
|
assert mask.shape[0] in {
|
|
1,
|
|
query.shape[0],
|
|
}, f"mask/query shape: {mask.shape}/{query.shape}"
|
|
if not use_memory:
|
|
assert key.shape[0] in {
|
|
1,
|
|
query.shape[0],
|
|
}, f"key/query shape: {key.shape}/{query.shape}"
|
|
assert mask.shape[1] == 1
|
|
assert mask.shape[2] in {
|
|
1,
|
|
query.shape[1],
|
|
}, f"mask/query shape: {mask.shape}/{query.shape}"
|
|
if not use_memory:
|
|
assert mask.shape[3] in {
|
|
1,
|
|
key.shape[1],
|
|
}, f"mask/query shape: {mask.shape}/{key.shape}"
|
|
|
|
# Compute key/query/values (overload K/Q/V to denote the respective sizes).
|
|
assert self.num_q_heads % self.num_kv_heads == 0
|
|
query_heads = projection(
|
|
query,
|
|
self.key_size,
|
|
self.num_q_heads,
|
|
name="query",
|
|
sharding=P("data", "model"),
|
|
mesh=mesh,
|
|
) # [B, T', H, Q=K]
|
|
|
|
new_memory = None
|
|
key_heads = projection(
|
|
key,
|
|
self.key_size,
|
|
self.num_kv_heads,
|
|
name="key",
|
|
sharding=P("data", "model"),
|
|
mesh=mesh,
|
|
) # [B, T, H, K]
|
|
value_heads = projection(
|
|
value,
|
|
self.value_size,
|
|
self.num_kv_heads,
|
|
name="value",
|
|
sharding=P("data", "model"),
|
|
mesh=mesh,
|
|
) # [B, T, H, V]
|
|
|
|
rotate = RotaryEmbedding(dim=self.key_size, base_exponent=int(1e4))
|
|
key_heads = rotate(key_heads, seq_dim=1, offset=(kv_memory.step if kv_memory else 0))
|
|
query_heads = rotate(query_heads, seq_dim=1, offset=(kv_memory.step if kv_memory else 0))
|
|
|
|
@functools.partial(jax.vmap)
|
|
def update_into(mem, start, update):
|
|
return jax.lax.dynamic_update_slice_in_dim(mem, update, start, axis=0)
|
|
|
|
if kv_memory:
|
|
if mesh is not None:
|
|
|
|
@functools.partial(
|
|
shard_map,
|
|
mesh=mesh,
|
|
in_specs=(
|
|
P("data", None, "model"),
|
|
P("data"),
|
|
P("data", None, "model"),
|
|
),
|
|
out_specs=P("data", None, "model"),
|
|
check_rep=False,
|
|
)
|
|
def update_into_shmap(mems, starts, updates):
|
|
return update_into(mems, starts, updates)
|
|
|
|
key_heads = update_into_shmap(kv_memory.k, kv_memory.step, key_heads)
|
|
value_heads = update_into_shmap(kv_memory.v, kv_memory.step, value_heads)
|
|
else:
|
|
key_heads = update_into(kv_memory.k, kv_memory.step, key_heads)
|
|
value_heads = update_into(kv_memory.v, kv_memory.step, value_heads)
|
|
|
|
new_step = kv_memory.step + sequence_length
|
|
memory_mask = jnp.arange(kv_memory.k.shape[1]) < new_step[:, None]
|
|
memory_mask = memory_mask[:, None, None, :] # [B, H, T, T]
|
|
if mask is not None:
|
|
mask = memory_mask * mask
|
|
else:
|
|
mask = memory_mask
|
|
|
|
new_memory = KVMemory(
|
|
k=key_heads,
|
|
v=value_heads,
|
|
step=new_step,
|
|
)
|
|
# Add separate dimension for grouped query heads.
|
|
query_heads = with_sharding_constraint(query_heads, P(self.data_axis, None, "model", None))
|
|
key_heads = with_sharding_constraint(key_heads, P(self.data_axis, None, "model", None))
|
|
value_heads = with_sharding_constraint(value_heads, P(self.data_axis, None, "model", None))
|
|
b, t, h, d = query_heads.shape
|
|
_, _, kv_h, _ = key_heads.shape
|
|
assert h % kv_h == 0, f"query_heads {h} must be a multiple of kv_heads {kv_h}"
|
|
|
|
query_heads = jnp.reshape(query_heads, (b, t, kv_h, h // kv_h, d))
|
|
query_heads = with_sharding_constraint(
|
|
query_heads, P(self.data_axis, None, "model", None, None)
|
|
)
|
|
|
|
# Compute attention weights.
|
|
# Attention softmax is always carried out in fp32.
|
|
attn_logits = jnp.einsum("...thHd,...Thd->...hHtT", query_heads, key_heads).astype(
|
|
jnp.float32
|
|
)
|
|
attn_logits *= self.attn_output_multiplier
|
|
max_attn_val = jnp.array(30.0, dtype=attn_logits.dtype)
|
|
attn_logits = max_attn_val * jnp.tanh(attn_logits / max_attn_val)
|
|
|
|
mask = mask[:, :, None, :, :]
|
|
|
|
if mask is not None:
|
|
if mask.ndim != attn_logits.ndim:
|
|
raise ValueError(
|
|
f"Mask dimensionality {mask.ndim} must match logits dimensionality "
|
|
f"{attn_logits.ndim} for {mask.shape}/{attn_logits.shape}."
|
|
)
|
|
attn_logits = jnp.where(mask, attn_logits, -1e30)
|
|
attn_weights = jax.nn.softmax(attn_logits).astype(query.dtype) # [H, T', T]
|
|
|
|
# Weight the values by the attention and flatten the head vectors.
|
|
attn = jnp.einsum("...hHtT,...Thd->...thHd", attn_weights, value_heads)
|
|
attn = with_sharding_constraint(attn, P(self.data_axis, None, "model", None, None))
|
|
leading_dims = attn.shape[:2]
|
|
attn = jnp.reshape(attn, (*leading_dims, -1)) # [T', H*V]
|
|
attn = with_sharding_constraint(attn, P(self.data_axis, None, "model"))
|
|
# Apply another projection to get the final embeddings.
|
|
final_projection = Linear(
|
|
self.model_size,
|
|
with_bias=False,
|
|
sharding=P("model", "data"),
|
|
mesh=mesh,
|
|
)
|
|
return MHAOutput(final_projection(attn), new_memory)
|
|
|
|
@hk.transparent
|
|
def _linear_projection(
|
|
self,
|
|
x: jax.Array,
|
|
head_size: int,
|
|
num_heads: int,
|
|
sharding: Optional[P] = None,
|
|
name: Optional[str] = None,
|
|
mesh: Any = None,
|
|
) -> jax.Array:
|
|
y = Linear(
|
|
num_heads * head_size,
|
|
with_bias=False,
|
|
name=name,
|
|
sharding=sharding,
|
|
mesh=mesh,
|
|
)(x)
|
|
*leading_dims, _ = x.shape
|
|
return y.reshape((*leading_dims, num_heads, head_size))
|
|
|
|
|
|
@dataclass
|
|
class MHABlock(hk.Module):
|
|
"""A MHA Block"""
|
|
|
|
num_q_heads: int
|
|
num_kv_heads: int
|
|
key_size: int
|
|
attn_output_multiplier: float = 1.0
|
|
mesh: Any = None
|
|
data_axis: Union[str, Tuple[str, ...]] = "data"
|
|
model_axis: Union[str, Tuple[str, ...]] = "model"
|
|
|
|
@hk.transparent
|
|
def __call__(
|
|
self,
|
|
inputs: jax.Array, # [B, T, D]
|
|
mask: jax.Array, # [B, 1, T, T] or [B, 1, 1, T] or B[1, 1, 1, 1]
|
|
layer_memory: Optional[KVMemory],
|
|
) -> MHAOutput:
|
|
_, _, model_size = inputs.shape
|
|
assert mask.ndim == 4, f"shape: {mask.shape}"
|
|
assert mask.shape[2] in {1, inputs.shape[1]}, str(mask.shape)
|
|
assert mask.shape[3] in {1, inputs.shape[1]}, str(mask.shape)
|
|
side_input = inputs
|
|
|
|
def attn_block(query, key, value, mask, memory) -> MHAOutput:
|
|
return MultiHeadAttention(
|
|
num_q_heads=self.num_q_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
key_size=self.key_size,
|
|
model_size=model_size,
|
|
data_axis=self.data_axis,
|
|
model_axis=self.model_axis,
|
|
attn_output_multiplier=self.attn_output_multiplier,
|
|
)(
|
|
query,
|
|
key,
|
|
value,
|
|
mask,
|
|
memory,
|
|
mesh=self.mesh,
|
|
)
|
|
|
|
attn_output = attn_block(inputs, side_input, side_input, mask, layer_memory)
|
|
h_attn = attn_output.embeddings
|
|
|
|
return attn_output._replace(embeddings=h_attn)
|
|
|
|
|
|
@dataclass
|
|
class DenseBlock(hk.Module):
|
|
num_q_heads: int
|
|
num_kv_heads: int
|
|
key_size: int
|
|
widening_factor: float = 4.0
|
|
sharding_constraint: bool = False
|
|
mesh: Any = None
|
|
|
|
@hk.transparent
|
|
def __call__(
|
|
self,
|
|
inputs: jax.Array, # [B, T, D]
|
|
) -> jax.Array: # [B, T, D]
|
|
_, _, model_size = inputs.shape
|
|
h_v = Linear(
|
|
ffn_size(
|
|
model_size,
|
|
self.widening_factor,
|
|
),
|
|
with_bias=False,
|
|
mesh=self.mesh,
|
|
sharding=P("data", "model"),
|
|
name="linear_v",
|
|
)(inputs)
|
|
h_w1 = jax.nn.gelu(
|
|
Linear(
|
|
ffn_size(
|
|
model_size,
|
|
self.widening_factor,
|
|
),
|
|
with_bias=False,
|
|
mesh=self.mesh,
|
|
sharding=P("data", "model"),
|
|
)(inputs)
|
|
)
|
|
h_dense = Linear(
|
|
model_size,
|
|
with_bias=False,
|
|
sharding=P("model", "data"),
|
|
mesh=self.mesh,
|
|
shard_axis=1,
|
|
)(h_w1 * h_v)
|
|
|
|
return h_dense
|
|
|
|
|
|
@dataclass
|
|
class DecoderLayer(hk.Module):
|
|
"""A transformer stack."""
|
|
|
|
num_q_heads: int
|
|
num_kv_heads: int
|
|
key_size: int
|
|
num_layers: int
|
|
# MoE.
|
|
num_experts: int
|
|
layer_index: Optional[int] = None
|
|
num_selected_experts: int = 1
|
|
widening_factor: float = 4.0
|
|
name: Optional[str] = None
|
|
data_axis: Union[str, Tuple[str, ...]] = "data"
|
|
model_axis: Union[str, Tuple[str, ...]] = "model"
|
|
shard_activations: bool = False
|
|
attn_output_multiplier: float = 1.0
|
|
mesh: Any = None
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: jax.Array, # [B, T, D]
|
|
mask: jax.Array, # [B, 1, T, T] or [B, 1, 1, T]
|
|
padding_mask: Optional[jax.Array],
|
|
layer_memory: Optional[KVMemory],
|
|
) -> DecoderOutput:
|
|
"""Transforms input embedding sequences to output embedding sequences."""
|
|
|
|
def layer_norm(x):
|
|
return hk_rms_norm(x)
|
|
|
|
if self.shard_activations:
|
|
sharding = P(self.data_axis, None, self.model_axis)
|
|
else:
|
|
sharding = P(self.data_axis, None)
|
|
h = with_sharding_constraint(inputs, sharding)
|
|
|
|
attn_output = MHABlock(
|
|
num_q_heads=self.num_q_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
key_size=self.key_size,
|
|
attn_output_multiplier=self.attn_output_multiplier,
|
|
mesh=self.mesh,
|
|
data_axis=self.data_axis,
|
|
model_axis=self.model_axis,
|
|
)(layer_norm(h), mask, layer_memory)
|
|
h_attn = attn_output.embeddings
|
|
|
|
h_attn = layer_norm(h_attn)
|
|
h += h_attn
|
|
h = with_sharding_constraint(h, sharding)
|
|
|
|
def base_dense_block(h):
|
|
h = DenseBlock(
|
|
num_q_heads=self.num_q_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
key_size=self.key_size,
|
|
widening_factor=self.widening_factor,
|
|
sharding_constraint=False,
|
|
mesh=self.mesh,
|
|
)(h)
|
|
return h
|
|
|
|
if self.num_experts > 1:
|
|
rank_logger.debug("Using MoE!")
|
|
router = Router(
|
|
num_selected_experts=self.num_selected_experts,
|
|
shard_activations=self.shard_activations,
|
|
data_axis=self.data_axis,
|
|
model_axis=self.model_axis,
|
|
mesh=self.mesh,
|
|
)
|
|
h_dense = MoELayer(
|
|
num_experts=self.num_experts,
|
|
mesh=self.mesh,
|
|
layer_fn=base_dense_block,
|
|
router=router,
|
|
shard_activations=self.shard_activations,
|
|
data_axis=self.data_axis,
|
|
model_axis=self.model_axis,
|
|
)(layer_norm(h), padding_mask)
|
|
else:
|
|
h_dense = base_dense_block(layer_norm(h))
|
|
|
|
h_dense = layer_norm(h_dense)
|
|
h += h_dense
|
|
h = with_sharding_constraint(h, sharding)
|
|
|
|
return DecoderOutput(
|
|
embeddings=h,
|
|
memory=attn_output.memory,
|
|
)
|
|
|
|
|
|
class LanguageModelOutput(NamedTuple):
|
|
logits: jax.Array
|
|
model_state: Any
|
|
|
|
|
|
class InOutEmbed(hk.Embed):
|
|
"""Module for embedding tokens in a low-dimensional space."""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: Optional[int] = None,
|
|
embed_dim: Optional[int] = None,
|
|
sharding: Optional[P] = None,
|
|
name: Optional[str] = None,
|
|
):
|
|
super().__init__(
|
|
vocab_size=vocab_size,
|
|
embed_dim=embed_dim,
|
|
name=name,
|
|
)
|
|
self.sharding = sharding
|
|
|
|
@property
|
|
def embeddings(self):
|
|
embed_mat = hk.get_parameter(
|
|
"embeddings",
|
|
[self.vocab_size, self.embed_dim],
|
|
dtype=jnp.float32,
|
|
init=hk.initializers.Constant(0),
|
|
)
|
|
if self.sharding:
|
|
embed_mat = with_sharding_constraint(embed_mat, self.sharding)
|
|
return embed_mat
|
|
|
|
def decode(
|
|
self,
|
|
inputs: jax.Array,
|
|
) -> jax.Array:
|
|
return jnp.dot(inputs, self.embeddings.T.astype(inputs.dtype))
|
|
|
|
|
|
@dataclass
|
|
class LanguageModelConfig:
|
|
"""An autoregressive transformer-based language model."""
|
|
|
|
model: Optional[TransformerConfig]
|
|
vocab_size: int
|
|
pad_token: int
|
|
eos_token: int
|
|
sequence_len: int
|
|
model_size: int = 0
|
|
embedding_init_scale: float = 1.0
|
|
embedding_multiplier_scale: float = 1.0
|
|
output_multiplier_scale: float = 1.0
|
|
name: Optional[str] = None
|
|
fprop_dtype: Any = jnp.bfloat16
|
|
model_type: Optional[str] = None
|
|
init_scale_override: Optional[float] = None
|
|
shard_embeddings: bool = True
|
|
|
|
_initialized = False
|
|
|
|
def initialize(self):
|
|
# We cannot specify [] as a default value (it is mutable), hence None.
|
|
model_config = self.model
|
|
assert self.init_scale_override is None, (
|
|
"Overriding model initialize scale is supported only for predefined models."
|
|
)
|
|
if self.model_size == 0:
|
|
self.model_size = model_config.emb_size
|
|
assert self.model is not None, "Model could not be initialized."
|
|
self._initialized = True
|
|
return self
|
|
|
|
def make(self, *args, **kwargs):
|
|
if not self._initialized:
|
|
logger.warning(
|
|
f"LanguageModel {self.name} is not initialized. Initializing for one replica."
|
|
)
|
|
self.initialize()
|
|
|
|
return LanguageModel(
|
|
model=self.model.make(*args, **kwargs),
|
|
config=self,
|
|
fprop_dtype=self.fprop_dtype,
|
|
mesh=kwargs.get("mesh", None),
|
|
)
|
|
|
|
def partition_rules(self):
|
|
return LM_PARTITION_RULES + self.model.partition_rules()
|
|
|
|
|
|
def layer_norm(x, model):
|
|
return hk_rms_norm(x)
|
|
|
|
|
|
@dataclass
|
|
class LanguageModel(hk.Module):
|
|
"""An autoregressive transformer-based language model."""
|
|
|
|
model: "Transformer"
|
|
config: LanguageModelConfig
|
|
fprop_dtype: Any = jnp.bfloat16
|
|
name: Optional[str] = None
|
|
mesh: Any = None
|
|
|
|
def __call__(
|
|
self,
|
|
tokens: jax.Array,
|
|
memory: Optional[Memory] = None,
|
|
*,
|
|
batch: Dict[str, jax.Array] = {},
|
|
last_hid_only: bool = False,
|
|
length: Optional[jax.Array] = None,
|
|
) -> LanguageModelOutput:
|
|
"""Forward pass, producing a sequence of logits."""
|
|
del batch # Unused.
|
|
|
|
config = self.config
|
|
|
|
input_mask = jnp.greater(tokens, config.pad_token)
|
|
|
|
# Embed the input tokens and positions.
|
|
in_out_embed = InOutEmbed(
|
|
self.config.vocab_size,
|
|
embed_dim=self.config.model_size,
|
|
sharding=P(None, ("data", "model")),
|
|
)
|
|
input_embeddings = in_out_embed(tokens).astype(config.fprop_dtype)
|
|
input_embeddings = with_sharding_constraint(
|
|
input_embeddings, P("data", None, self.model.model_axis)
|
|
)
|
|
input_embeddings *= config.embedding_multiplier_scale
|
|
|
|
model_output = self.model(
|
|
input_embeddings,
|
|
input_mask,
|
|
memory=memory,
|
|
) # [B, T, D]
|
|
embeddings, model_state = model_output.embeddings, model_output.memory
|
|
if self.model.shard_activations:
|
|
embeddings = with_sharding_constraint(
|
|
embeddings, P("data", None, self.model.model_axis)
|
|
)
|
|
else:
|
|
embeddings = with_sharding_constraint(embeddings, P("data", None))
|
|
rank_logger.debug(f"Final embedding shape: {embeddings.shape}")
|
|
embeddings = layer_norm(embeddings, self.model)
|
|
assert embeddings.dtype == self.fprop_dtype
|
|
|
|
if last_hid_only:
|
|
last_step = jnp.maximum(jnp.sum(input_mask.astype(jnp.int32), axis=1) - 1, 0)
|
|
last_hid = jax.vmap(lambda x, i: x[i], in_axes=0, out_axes=0)(embeddings, last_step)
|
|
return last_hid
|
|
|
|
if length is not None:
|
|
last_step = jnp.maximum(length.astype(jnp.int32) - 1, 0)
|
|
embeddings = jax.vmap(lambda x, i: x[i], in_axes=0, out_axes=0)(embeddings, last_step)
|
|
embeddings = jnp.expand_dims(embeddings, axis=1)
|
|
|
|
# Decode the embeddings (here, we use tied weights).
|
|
rank_logger.info(embeddings.shape)
|
|
out = in_out_embed.decode(embeddings)
|
|
rank_logger.info(out.shape)
|
|
out *= config.output_multiplier_scale
|
|
|
|
if self.model.shard_activations:
|
|
out = with_sharding_constraint(out, P("data", None, self.model.model_axis))
|
|
else:
|
|
out = with_sharding_constraint(out, P("data", None))
|
|
|
|
return LanguageModelOutput(
|
|
logits=out,
|
|
model_state=model_state,
|
|
)
|
|
|
|
def init_memory(self, batch_size: int, seq_len: int, dtype=jnp.bfloat16):
|
|
return self.model.init_memory(batch_size=batch_size, sequence_len=seq_len, dtype=dtype)
|
|
|
|
def prefill_memory(self, prompts, memory):
|
|
# Pad to the left and right align?
|
|
# Basically assume prompt is already padded
|
|
model_output = self(prompts, memory=memory)
|
|
return model_output.logits, model_output.model_state
|
|
|
|
|
|
@dataclass
|
|
class Transformer(hk.Module):
|
|
"""A transformer stack."""
|
|
|
|
num_q_heads: int
|
|
num_kv_heads: int
|
|
key_size: int
|
|
widening_factor: float
|
|
init_scale: float
|
|
mesh: Any
|
|
attn_output_multiplier: float
|
|
shard_activations: bool
|
|
num_layers: int
|
|
# MoE
|
|
num_experts: int
|
|
num_selected_experts: int
|
|
name: Optional[str] = None
|
|
|
|
# Used for activation sharding
|
|
data_axis: Union[str, Tuple[str, ...]] = "data"
|
|
model_axis: Union[str, Tuple[str, ...]] = "model"
|
|
|
|
def init_memory(self, batch_size: int, sequence_len: int, dtype=jnp.bfloat16):
|
|
return Memory(
|
|
layers=init_layer_memories(
|
|
batch_size,
|
|
sequence_len,
|
|
self.num_kv_heads,
|
|
self.key_size,
|
|
self.num_layers,
|
|
step=jnp.zeros(batch_size, dtype=jnp.int32),
|
|
dtype=dtype,
|
|
),
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
embeddings: jax.Array, # [B, T, D]
|
|
mask: jax.Array, # [B, T]
|
|
memory: Optional[Memory],
|
|
) -> TransformerOutput:
|
|
"""Transforms input embedding sequences to output embedding sequences."""
|
|
|
|
fprop_dtype = embeddings.dtype
|
|
_, seq_len, model_size = embeddings.shape
|
|
padding_mask = mask.copy()
|
|
mask = mask[:, None, None, :] # [B, H=1, T'=1, T]
|
|
|
|
# Compute causal mask for autoregressive sequence modelling.
|
|
causal_mask = jnp.tril(jnp.ones((1, 1, seq_len, seq_len))).astype(
|
|
fprop_dtype
|
|
) # [B=1, H=1, T, T]
|
|
mask = mask * causal_mask # [B, H=1, T, T]
|
|
|
|
h = embeddings
|
|
kv_memories = []
|
|
|
|
def block(
|
|
h,
|
|
mask,
|
|
padding_mask,
|
|
memory,
|
|
layer_index: Optional[int] = None,
|
|
widening_factor: Optional[int] = None,
|
|
name: Optional[str] = None,
|
|
) -> DecoderOutput:
|
|
return DecoderLayer(
|
|
num_q_heads=self.num_q_heads,
|
|
num_kv_heads=self.num_kv_heads,
|
|
key_size=self.key_size,
|
|
widening_factor=widening_factor or self.widening_factor,
|
|
num_layers=self.num_layers,
|
|
mesh=self.mesh,
|
|
data_axis=self.data_axis,
|
|
model_axis=self.model_axis,
|
|
attn_output_multiplier=self.attn_output_multiplier,
|
|
shard_activations=self.shard_activations,
|
|
# MoE.
|
|
num_experts=self.num_experts,
|
|
num_selected_experts=self.num_selected_experts,
|
|
name=name,
|
|
layer_index=layer_index,
|
|
)(
|
|
h,
|
|
mask,
|
|
padding_mask,
|
|
memory,
|
|
)
|
|
|
|
for i in range(self.num_layers):
|
|
decoder_output = block(
|
|
h,
|
|
mask,
|
|
padding_mask,
|
|
memory.layers[i] if memory else None,
|
|
layer_index=i,
|
|
name=f"decoder_layer_{i}",
|
|
)
|
|
h, new_kv_memory = (
|
|
decoder_output.embeddings,
|
|
decoder_output.memory,
|
|
)
|
|
kv_memories.append(new_kv_memory)
|
|
|
|
return TransformerOutput(
|
|
embeddings=h,
|
|
memory=Memory(layers=kv_memories),
|
|
)
|