# Copyright 2024 X.AI Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Optional from model import LanguageModelConfig, TransformerConfig, QuantizedWeight8bit as QW8Bit from runners import InferenceRunner, ModelRunner, sample_from_model CKPT_PATH = "./checkpoints/" def create_grok_1_model() -> LanguageModelConfig: return LanguageModelConfig( vocab_size=128 * 1024, pad_token=0, eos_token=2, sequence_len=8192, embedding_init_scale=1.0, output_multiplier_scale=0.5773502691896257, embedding_multiplier_scale=78.38367176906169, model=TransformerConfig( emb_size=48 * 128, widening_factor=8, key_size=128, num_q_heads=48, num_kv_heads=8, num_layers=64, attn_output_multiplier=0.08838834764831845, shard_activations=True, # MoE. num_experts=8, num_selected_experts=2, # Activation sharding. data_axis="data", model_axis="model", ), ) def create_inference_runner(model: LanguageModelConfig, checkpoint_path: str, tokenizer_path: str) -> InferenceRunner: return InferenceRunner( pad_sizes=(1024,), runner=ModelRunner( model=model, bs_per_device=0.125, checkpoint_path=checkpoint_path, ), name="local", load=checkpoint_path, tokenizer_path=tokenizer_path, local_mesh_config=(1, 8), between_hosts_config=(1, 1), ) def generate_text(inference_runner: InferenceRunner, prompt: str, max_len: int = 100, temperature: float = 0.01) -> str: gen = inference_runner.run() return sample_from_model(gen, prompt, max_len=max_len, temperature=temperature) def main(): grok_1_model = create_grok_1_model() inference_runner = create_inference_runner(grok_1_model, CKPT_PATH, "./tokenizer.model") inference_runner.initialize() inp = "The answer to life the universe and everything is of course" output = generate_text(inference_runner, inp) print(f"Output for prompt: {inp}\n{output}") if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()