mirror of
https://github.com/xai-org/grok-1.git
synced 2024-11-24 12:39:54 +03:00
Update runners.py
This commit is contained in:
parent
58690bf060
commit
92f7bbf073
454
runners.py
454
runners.py
@ -17,21 +17,15 @@ import bisect
|
|||||||
import functools
|
import functools
|
||||||
import logging
|
import logging
|
||||||
import math
|
import math
|
||||||
import re
|
import numpy as np
|
||||||
|
import jax
|
||||||
|
import jax.numpy as jnp
|
||||||
|
import haiku as hk
|
||||||
|
import sentencepiece
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
||||||
|
from jax.experimental import pjit
|
||||||
import haiku as hk
|
|
||||||
import jax
|
|
||||||
import jax.experimental.pjit as pjit
|
|
||||||
import jax.numpy as jnp
|
|
||||||
import numpy as np
|
|
||||||
import sentencepiece
|
|
||||||
from jax.experimental import mesh_utils
|
|
||||||
from jax.sharding import PartitionSpec as P
|
from jax.sharding import PartitionSpec as P
|
||||||
from jax.typing import ArrayLike
|
|
||||||
|
|
||||||
import checkpoint as xai_checkpoint
|
|
||||||
from model import (
|
from model import (
|
||||||
LanguageModelConfig,
|
LanguageModelConfig,
|
||||||
LanguageModelOutput,
|
LanguageModelOutput,
|
||||||
@ -40,49 +34,43 @@ from model import (
|
|||||||
Memory,
|
Memory,
|
||||||
KVMemory,
|
KVMemory,
|
||||||
)
|
)
|
||||||
|
import checkpoint as xai_checkpoint
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
logger.setLevel(logging.INFO)
|
||||||
rank_logger = logging.getLogger("rank")
|
rank_logger = logging.getLogger("rank")
|
||||||
|
rank_logger.setLevel(logging.INFO)
|
||||||
|
|
||||||
TOP_K = 8
|
TOP_K = 8
|
||||||
|
|
||||||
|
|
||||||
class SampleSettings(NamedTuple):
|
class SampleSettings(NamedTuple):
|
||||||
temperature: ArrayLike
|
temperature: jax.Array
|
||||||
nucleus_p: ArrayLike
|
nucleus_p: jax.Array
|
||||||
mask: ArrayLike
|
mask: jax.Array
|
||||||
# Whether a given batch element is actively used. [B]
|
active: jax.Array
|
||||||
active: ArrayLike
|
|
||||||
|
|
||||||
|
|
||||||
class SampleOutput(NamedTuple):
|
class SampleOutput(NamedTuple):
|
||||||
token_id: ArrayLike
|
token_id: jax.Array
|
||||||
prob: ArrayLike
|
prob: jax.Array
|
||||||
top_k_token_ids: ArrayLike
|
top_k_token_ids: jax.Array
|
||||||
top_k_probs: ArrayLike
|
top_k_probs: jax.Array
|
||||||
|
|
||||||
|
def insert_slice(memory: Memory, slice: Memory, length: int, i: int) -> Memory:
|
||||||
def insert_slice(memory: Memory, slice, length, i):
|
|
||||||
slice = Memory(
|
slice = Memory(
|
||||||
layers=[
|
layers=[
|
||||||
KVMemory(layer.k, layer.v, step=jnp.array([length]))
|
KVMemory(layer.k, layer.v, step=jnp.array([length]))
|
||||||
for layer in slice.layers
|
for layer in slice.layers
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
return jax.tree_map(lambda m, u: jax.lax.dynamic_update_index_in_dim(m, u[0], i, axis=0),
|
return jax.tree_map(lambda m, u: jax.lax.dynamic_update_index_in_dim(m, u[0], i, axis=0),
|
||||||
memory, slice)
|
memory, slice)
|
||||||
|
|
||||||
|
def pad_to_size(x: jnp.ndarray, size: int) -> jnp.ndarray:
|
||||||
def pad_to_size(x, size):
|
|
||||||
if x.shape[0] > size:
|
if x.shape[0] > size:
|
||||||
# Left truncate if the context is too long.
|
|
||||||
x = x[-size:]
|
x = x[-size:]
|
||||||
return np.pad(x, [0, size - x.shape[0]], mode="constant", constant_values=0)
|
return np.pad(x, [0, size - x.shape[0]], mode="constant", constant_values=0)
|
||||||
|
|
||||||
|
|
||||||
def top_p_filter(logits: jax.Array, top_p: jax.Array) -> jax.Array:
|
def top_p_filter(logits: jax.Array, top_p: jax.Array) -> jax.Array:
|
||||||
"""Performs nucleus filtering on logits."""
|
|
||||||
assert logits.ndim == top_p.ndim, f"Expected {logits.ndim} equal {top_p.ndim}"
|
assert logits.ndim == top_p.ndim, f"Expected {logits.ndim} equal {top_p.ndim}"
|
||||||
sorted_logits = jax.lax.sort(logits, is_stable=False)
|
sorted_logits = jax.lax.sort(logits, is_stable=False)
|
||||||
sorted_probs = jax.nn.softmax(sorted_logits)
|
sorted_probs = jax.nn.softmax(sorted_logits)
|
||||||
@ -92,36 +80,27 @@ def top_p_filter(logits: jax.Array, top_p: jax.Array) -> jax.Array:
|
|||||||
)
|
)
|
||||||
assert threshold_largest_logits.shape == logits.shape[:-1] + (1,)
|
assert threshold_largest_logits.shape == logits.shape[:-1] + (1,)
|
||||||
mask = logits >= threshold_largest_logits
|
mask = logits >= threshold_largest_logits
|
||||||
# Set unused logits to -inf.
|
|
||||||
logits = jnp.where(mask, logits, -1e10)
|
logits = jnp.where(mask, logits, -1e10)
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
|
|
||||||
def sample_token(
|
def sample_token(
|
||||||
rngs: jax.random.PRNGKey,
|
rngs: jax.random.PRNGKey,
|
||||||
lm_outputs: LanguageModelOutput,
|
lm_outputs: LanguageModelOutput,
|
||||||
settings: SampleSettings,
|
settings: SampleSettings,
|
||||||
) -> SampleOutput:
|
) -> SampleOutput:
|
||||||
# Expand the settings shape to match the logit shape.
|
|
||||||
settings = SampleSettings(
|
settings = SampleSettings(
|
||||||
temperature=jnp.expand_dims(settings.temperature, (1, 2)), # Input [B], output [B, 1, 1].
|
temperature=jnp.expand_dims(settings.temperature, (1, 2)),
|
||||||
nucleus_p=jnp.expand_dims(settings.nucleus_p, (1, 2)), # Input [B], output [B, 1, 1].
|
nucleus_p=jnp.expand_dims(settings.nucleus_p, (1, 2)),
|
||||||
mask=jnp.expand_dims(settings.mask, 1), # Input [B, V], output [B, 1, V].
|
mask=jnp.expand_dims(settings.mask, 1),
|
||||||
active=settings.active, # [B].
|
active=settings.active,
|
||||||
)
|
)
|
||||||
logits = lm_outputs.logits / settings.temperature.astype(lm_outputs.logits.dtype)
|
logits = lm_outputs.logits / settings.temperature.astype(lm_outputs.logits.dtype)
|
||||||
# Mask out all disallowed tokens by assigning them a near-zero probability.
|
|
||||||
logits = jnp.where(settings.mask, logits, -1e10)
|
logits = jnp.where(settings.mask, logits, -1e10)
|
||||||
# Mask out all tokens that don't fall into the p-th percentile.
|
|
||||||
logits = top_p_filter(logits, settings.nucleus_p.astype(logits.dtype))
|
logits = top_p_filter(logits, settings.nucleus_p.astype(logits.dtype))
|
||||||
|
|
||||||
new_token = jax.vmap(jax.random.categorical)(rngs, logits)
|
new_token = jax.vmap(jax.random.categorical)(rngs, logits)
|
||||||
|
|
||||||
probabilities = jax.nn.softmax(logits)
|
probabilities = jax.nn.softmax(logits)
|
||||||
token_prob = jnp.take_along_axis(probabilities, jnp.expand_dims(new_token, 1), axis=2)
|
token_prob = jnp.take_along_axis(probabilities, jnp.expand_dims(new_token, 1), axis=2)
|
||||||
token_prob = jnp.squeeze(token_prob, 1)
|
token_prob = jnp.squeeze(token_prob, 1)
|
||||||
|
|
||||||
# Gather the top-k tokens and probabilities.
|
|
||||||
top_k_probs, top_k_token_ids = jax.lax.top_k(probabilities, TOP_K)
|
top_k_probs, top_k_token_ids = jax.lax.top_k(probabilities, TOP_K)
|
||||||
top_k_probs = jnp.squeeze(top_k_probs, 1)
|
top_k_probs = jnp.squeeze(top_k_probs, 1)
|
||||||
top_k_token_ids = jnp.squeeze(top_k_token_ids, 1)
|
top_k_token_ids = jnp.squeeze(top_k_token_ids, 1)
|
||||||
@ -132,19 +111,14 @@ def sample_token(
|
|||||||
top_k_probs,
|
top_k_probs,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModelRunner:
|
class ModelRunner:
|
||||||
model: LanguageModelConfig
|
model: LanguageModelConfig
|
||||||
|
|
||||||
bs_per_device: float = 2.0
|
bs_per_device: float = 2.0
|
||||||
|
|
||||||
load_rename_rules: Optional[list[tuple[str, str]]] = None
|
load_rename_rules: Optional[list[tuple[str, str]]] = None
|
||||||
load_exclude_rules: Optional[list[str]] = None
|
load_exclude_rules: Optional[list[str]] = None
|
||||||
|
rng_seed: int = 42
|
||||||
rng_seed: int = 42 # Initial rng seed.
|
|
||||||
transform_forward: bool = False
|
transform_forward: bool = False
|
||||||
|
|
||||||
checkpoint_path: str = ""
|
checkpoint_path: str = ""
|
||||||
|
|
||||||
def make_forward_fn(self, mesh: Any):
|
def make_forward_fn(self, mesh: Any):
|
||||||
@ -159,20 +133,15 @@ class ModelRunner:
|
|||||||
def initialize(
|
def initialize(
|
||||||
self,
|
self,
|
||||||
init_data,
|
init_data,
|
||||||
local_mesh_config: tuple[int, int],
|
local_mesh_config: Tuple[int, int],
|
||||||
between_hosts_config: tuple[int, int],
|
between_hosts_config: Tuple[int, int],
|
||||||
):
|
):
|
||||||
num_replicas = math.prod(between_hosts_config)
|
num_replicas = math.prod(between_hosts_config)
|
||||||
self.model.initialize()
|
self.model.initialize()
|
||||||
self.model.fprop_dtype = jnp.bfloat16
|
self.model.fprop_dtype = jnp.bfloat16
|
||||||
num_local_gpus = len(jax.local_devices())
|
num_local_gpus = len(jax.local_devices())
|
||||||
|
|
||||||
# Calculate the global batch size from the local batch size.
|
|
||||||
self.batch_size = int(self.bs_per_device * num_local_gpus * num_replicas)
|
self.batch_size = int(self.bs_per_device * num_local_gpus * num_replicas)
|
||||||
|
|
||||||
# Calculate the batch size per host from the global batch size.
|
|
||||||
self.local_batch_size = self.batch_size // jax.process_count()
|
self.local_batch_size = self.batch_size // jax.process_count()
|
||||||
|
|
||||||
self.local_mesh_config = local_mesh_config
|
self.local_mesh_config = local_mesh_config
|
||||||
self.between_hosts_config = between_hosts_config
|
self.between_hosts_config = between_hosts_config
|
||||||
rank_logger.info(
|
rank_logger.info(
|
||||||
@ -181,7 +150,6 @@ class ModelRunner:
|
|||||||
self.mesh = make_mesh(self.local_mesh_config, self.between_hosts_config)
|
self.mesh = make_mesh(self.local_mesh_config, self.between_hosts_config)
|
||||||
self.forward = self.make_forward_fn(mesh=self.mesh)
|
self.forward = self.make_forward_fn(mesh=self.mesh)
|
||||||
self.logits_fn = hk.transform(lambda tokens: self.forward(tokens)[0])
|
self.logits_fn = hk.transform(lambda tokens: self.forward(tokens)[0])
|
||||||
|
|
||||||
self.eval_forward = self.make_forward_fn(mesh=self.mesh)
|
self.eval_forward = self.make_forward_fn(mesh=self.mesh)
|
||||||
self.logits_eval_fn = hk.transform(lambda tokens: self.eval_forward(tokens)[0])
|
self.logits_eval_fn = hk.transform(lambda tokens: self.eval_forward(tokens)[0])
|
||||||
|
|
||||||
@ -234,7 +202,6 @@ class ModelRunner:
|
|||||||
assert self.transform_forward
|
assert self.transform_forward
|
||||||
state_shapes = jax.eval_shape(self.init_fn, rng, init_data)
|
state_shapes = jax.eval_shape(self.init_fn, rng, init_data)
|
||||||
init_state = None
|
init_state = None
|
||||||
|
|
||||||
state = xai_checkpoint.restore(
|
state = xai_checkpoint.restore(
|
||||||
checkpoint_path=self.checkpoint_path,
|
checkpoint_path=self.checkpoint_path,
|
||||||
state_shapes=state_shapes,
|
state_shapes=state_shapes,
|
||||||
@ -244,11 +211,9 @@ class ModelRunner:
|
|||||||
init_state=init_state,
|
init_state=init_state,
|
||||||
params_only=True,
|
params_only=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
del init_state
|
del init_state
|
||||||
return state
|
return state
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Request:
|
class Request:
|
||||||
prompt: str
|
prompt: str
|
||||||
@ -257,18 +222,17 @@ class Request:
|
|||||||
rng_seed: int
|
rng_seed: int
|
||||||
max_len: int
|
max_len: int
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class InferenceRunner:
|
class InferenceRunner:
|
||||||
name: str
|
name: str
|
||||||
runner: Any
|
runner: ModelRunner
|
||||||
load: str
|
load: str
|
||||||
tokenizer_path: str = "/tmp/xai_data/tokenizer.model"
|
tokenizer_path: str = "/tmp/xai_data/tokenizer.model"
|
||||||
local_mesh_config: Tuple[int, int] = (1, 1)
|
local_mesh_config: Tuple[int, int] = (1, 1)
|
||||||
between_hosts_config: Tuple[int, int] = (1, 1)
|
between_hosts_config: Tuple[int, int] = (1, 1)
|
||||||
pad_sizes: tuple[int] = (1024,)
|
pad_sizes: Tuple[int] = (1024,)
|
||||||
|
|
||||||
def get_pad_bucket(self, size):
|
def get_pad_bucket(self, size: int) -> int:
|
||||||
i = bisect.bisect_left(self.pad_sizes, size)
|
i = bisect.bisect_left(self.pad_sizes, size)
|
||||||
return self.pad_sizes[min(i, len(self.pad_sizes) - 1)]
|
return self.pad_sizes[min(i, len(self.pad_sizes) - 1)]
|
||||||
|
|
||||||
@ -276,330 +240,70 @@ class InferenceRunner:
|
|||||||
runner = self.runner
|
runner = self.runner
|
||||||
self.runner.transform_forward = True
|
self.runner.transform_forward = True
|
||||||
dummy_data = dict(
|
dummy_data = dict(
|
||||||
inputs=np.zeros((1, 256), dtype=np.int32),
|
inputs=np.zeros((1, self.get_pad_bucket(512)), dtype=np.int32),
|
||||||
targets=np.zeros((1, 256), dtype=np.int32),
|
|
||||||
)
|
)
|
||||||
runner.initialize(
|
state = runner.load_or_init(
|
||||||
dummy_data,
|
dummy_data,
|
||||||
local_mesh_config=self.local_mesh_config,
|
from_checkpoint=False,
|
||||||
between_hosts_config=self.between_hosts_config,
|
|
||||||
)
|
)
|
||||||
|
runner.params = state.params
|
||||||
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=self.tokenizer_path)
|
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=self.tokenizer_path)
|
||||||
|
def text_to_token_ids(text):
|
||||||
|
ids = self.tokenizer.encode(text, out_type=int)
|
||||||
|
return ids
|
||||||
|
|
||||||
max_len = runner.model.sequence_len
|
self.text_to_token_ids = text_to_token_ids
|
||||||
|
|
||||||
self.vocab_size = self.runner.model.vocab_size
|
def predict(self, request: Request) -> str:
|
||||||
|
rng = jax.random.PRNGKey(request.rng_seed)
|
||||||
|
token_ids = self.text_to_token_ids(request.prompt)
|
||||||
|
rng, gen_rng = jax.random.split(rng)
|
||||||
|
|
||||||
params = runner.load_or_init(dummy_data)
|
inputs = np.array(token_ids, dtype=np.int32)[np.newaxis, :]
|
||||||
self.params = params
|
|
||||||
|
|
||||||
def pad_to_max_len(x):
|
token_ids = jnp.array(inputs)
|
||||||
if len(x.shape) > 1:
|
state = self.runner.params
|
||||||
pad_width = max_len - x.shape[1]
|
|
||||||
return jnp.pad(x, [(0, 0), (0, pad_width), (0, 0), (0, 0)])
|
|
||||||
else:
|
|
||||||
return x
|
|
||||||
|
|
||||||
@functools.lru_cache
|
|
||||||
def lm():
|
|
||||||
return runner.model.make(mesh=runner.mesh)
|
|
||||||
|
|
||||||
def hk_forward(
|
|
||||||
tokens,
|
|
||||||
memory=None,
|
|
||||||
length=None,
|
|
||||||
active=None,
|
|
||||||
) -> LanguageModelOutput:
|
|
||||||
if memory is not None:
|
|
||||||
assert active is not None
|
|
||||||
layers = []
|
|
||||||
for l in memory.layers:
|
|
||||||
# Reset steps to 0 for inactive requests to avoid unnecessary computations.
|
|
||||||
step = jnp.where(active, l.step, jnp.zeros_like(l.step))
|
|
||||||
layers.append(l._replace(step=step))
|
|
||||||
memory = memory._replace(layers=layers)
|
|
||||||
return lm()(tokens, memory, length=length)
|
|
||||||
|
|
||||||
def hk_sample_step(rngs, last_output: SampleOutput, memory, settings):
|
|
||||||
rngs, rngs_ = jax.vmap(jax.random.split, out_axes=1)(rngs)
|
|
||||||
lm_outputs = hk_forward(last_output.token_id, memory=memory, active=settings.active)
|
|
||||||
sample_result = sample_token(rngs_, lm_outputs, settings)
|
|
||||||
return rngs, sample_result, lm_outputs.model_state
|
|
||||||
|
|
||||||
def hk_new_memory(batch_size, sequence_len):
|
|
||||||
return lm().init_memory(batch_size, sequence_len)
|
|
||||||
|
|
||||||
def hk_prefill_memory(
|
|
||||||
rngs,
|
|
||||||
memory,
|
|
||||||
settings,
|
|
||||||
last_output,
|
|
||||||
prompt,
|
|
||||||
length,
|
|
||||||
rng_seed,
|
|
||||||
new_settings,
|
|
||||||
i,
|
|
||||||
):
|
|
||||||
rng = jax.random.PRNGKey(seed=rng_seed)
|
|
||||||
rng, rng_ = jax.random.split(rng)
|
|
||||||
|
|
||||||
# Allocate new memory for this sample. The memory length is equal to the length of the
|
|
||||||
# prompt.
|
|
||||||
slice = hk_new_memory(1, prompt.shape[0])
|
|
||||||
|
|
||||||
# Move the settings for this individual batch entry into the joint settings tensor.
|
|
||||||
settings = jax.tree_map(
|
|
||||||
lambda o, v: jax.lax.dynamic_update_index_in_dim(o, v, i, axis=0),
|
|
||||||
settings,
|
|
||||||
new_settings,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Get the settings for the batch entry from the joint settings tensor.
|
|
||||||
settings_slice = jax.tree_map(lambda t: jnp.expand_dims(t[i], axis=0), settings)
|
|
||||||
|
|
||||||
# Process the first n-1 tokens of the prompt.
|
|
||||||
lm_outputs = hk_forward(
|
|
||||||
jnp.expand_dims(prompt, 0),
|
|
||||||
memory=slice,
|
|
||||||
length=jnp.expand_dims(length, 0),
|
|
||||||
active=settings_slice.active,
|
|
||||||
)
|
|
||||||
|
|
||||||
# The forward pass doesn't correctly set the `step` counter inside the memory. Manually
|
|
||||||
# override it so `hk_forward` uses the correct context length in the next call.
|
|
||||||
slice = lm_outputs.model_state
|
|
||||||
slice = slice._replace(
|
|
||||||
layers=[l._replace(step=jnp.array([length])) for l in slice.layers]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Sample the actual output token.
|
|
||||||
rng_ = jnp.expand_dims(rng_, 0)
|
|
||||||
new_output = sample_token(rng_, lm_outputs, settings_slice)
|
|
||||||
|
|
||||||
# Update the KV cache/memory.
|
|
||||||
slice = jax.tree_map(pad_to_max_len, slice)
|
|
||||||
memory = insert_slice(memory, slice, length, i)
|
|
||||||
|
|
||||||
rng = jnp.expand_dims(rng, 0)
|
|
||||||
rngs = jax.lax.dynamic_update_index_in_dim(rngs, rng, i, axis=0)
|
|
||||||
|
|
||||||
# Move the network outputs for this batch entry into the joint output tensor.
|
|
||||||
last_output = jax.tree_util.tree_map(
|
|
||||||
lambda last, new: jax.lax.dynamic_update_index_in_dim(last, new, i, axis=0),
|
|
||||||
last_output,
|
|
||||||
new_output,
|
|
||||||
)
|
|
||||||
return rngs, last_output, memory, settings
|
|
||||||
|
|
||||||
sample_step_ = hk.without_apply_rng(hk.transform(hk_sample_step))
|
|
||||||
prefill_memory_ = hk.without_apply_rng(hk.transform(hk_prefill_memory))
|
|
||||||
new_memory_ = hk.without_apply_rng(hk.transform(hk_new_memory))
|
|
||||||
forward_ = hk.without_apply_rng(hk.transform(hk_forward))
|
|
||||||
|
|
||||||
rng = jax.random.PRNGKey(42)
|
|
||||||
dummy_tokens = jnp.zeros((1, max_len), jnp.int32)
|
|
||||||
|
|
||||||
with runner.mesh:
|
|
||||||
shapes = jax.eval_shape(forward_.init, rng, dummy_tokens)
|
|
||||||
|
|
||||||
self.params_sharding = jax.tree_util.tree_map_with_path(
|
|
||||||
apply_rules(runner.model.partition_rules()),
|
|
||||||
shapes,
|
|
||||||
)
|
|
||||||
|
|
||||||
ds = P("data")
|
|
||||||
ms = runner.model.model.get_memory_sharding()
|
|
||||||
self.sample_step = pjit.pjit(
|
|
||||||
sample_step_.apply,
|
|
||||||
in_shardings=(self.params_sharding, None, ds, ms, None),
|
|
||||||
out_shardings=(None, ds, ms),
|
|
||||||
donate_argnums=3,
|
|
||||||
)
|
|
||||||
self.prefill_memory = pjit.pjit(
|
|
||||||
functools.partial(prefill_memory_.apply),
|
|
||||||
in_shardings=(
|
|
||||||
self.params_sharding,
|
|
||||||
None,
|
|
||||||
ms,
|
|
||||||
None,
|
|
||||||
ds,
|
|
||||||
None,
|
|
||||||
None,
|
|
||||||
None,
|
|
||||||
None,
|
|
||||||
None,
|
|
||||||
),
|
|
||||||
out_shardings=(None, ds, ms, None),
|
|
||||||
donate_argnums=(2,),
|
|
||||||
)
|
|
||||||
self.new_memory = pjit.pjit(
|
|
||||||
new_memory_.apply,
|
|
||||||
static_argnums=(1, 2),
|
|
||||||
out_shardings=ms,
|
|
||||||
)
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
"""Generator that accepts prompts."""
|
|
||||||
runner = self.runner
|
|
||||||
mesh = runner.mesh
|
|
||||||
max_len = runner.model.sequence_len
|
|
||||||
batch_size = runner.batch_size
|
|
||||||
params = self.params
|
|
||||||
rngs = jax.random.split(jax.random.PRNGKey(1), batch_size)
|
|
||||||
with mesh:
|
|
||||||
memory = self.new_memory(params, batch_size, max_len)
|
|
||||||
settings = SampleSettings(
|
settings = SampleSettings(
|
||||||
temperature=np.zeros((batch_size,), dtype=np.float32),
|
temperature=jnp.array([request.temperature]),
|
||||||
nucleus_p=np.zeros((batch_size,), dtype=np.float32),
|
nucleus_p=jnp.array([request.nucleus_p]),
|
||||||
mask=np.ones((batch_size, self.vocab_size), dtype=np.int32),
|
mask=jnp.ones(token_ids.shape, dtype=bool),
|
||||||
active=np.zeros((batch_size), dtype=np.int32),
|
active=jnp.ones(token_ids.shape, dtype=bool),
|
||||||
)
|
|
||||||
last_output = SampleOutput(
|
|
||||||
token_id=np.zeros((batch_size, 1), dtype=np.int32),
|
|
||||||
prob=np.zeros((batch_size, 1), dtype=jnp.bfloat16),
|
|
||||||
top_k_token_ids=np.zeros((batch_size, TOP_K), dtype=np.int32),
|
|
||||||
top_k_probs=np.zeros((batch_size, TOP_K), dtype=jnp.bfloat16),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
prompt = np.array([300, 400, 500, 600, 600, 700, 800])
|
for _ in range(request.max_len):
|
||||||
|
lm_outputs = self.runner.eval_forward(token_ids)
|
||||||
new_settings = SampleSettings(
|
sample_output = sample_token(gen_rng, lm_outputs, settings)
|
||||||
temperature=np.float32(1),
|
new_token = sample_output.token_id
|
||||||
nucleus_p=np.float32(1),
|
token_ids = jnp.concatenate([token_ids, new_token], axis=-1)
|
||||||
mask=np.ones((self.vocab_size,), dtype=np.int32),
|
if jnp.argmax(new_token) == 0:
|
||||||
active=np.zeros((), dtype=np.int32),
|
|
||||||
)
|
|
||||||
rng_seed = np.uint64(1)
|
|
||||||
|
|
||||||
for size in self.pad_sizes:
|
|
||||||
if size > runner.model.sequence_len:
|
|
||||||
break
|
break
|
||||||
logger.info("Precompile {}".format(size))
|
|
||||||
prompt_len = len(prompt)
|
return self.tokenizer.decode(token_ids.squeeze())
|
||||||
prompt = pad_to_size(prompt, size)
|
|
||||||
rngs, last_output, memory, settings = self.prefill_memory(
|
def main():
|
||||||
params,
|
runner = ModelRunner(
|
||||||
rngs,
|
model=LanguageModelConfig(),
|
||||||
memory,
|
checkpoint_path="path_to_checkpoint",
|
||||||
settings,
|
|
||||||
last_output,
|
|
||||||
prompt,
|
|
||||||
prompt_len,
|
|
||||||
rng_seed,
|
|
||||||
new_settings,
|
|
||||||
0,
|
|
||||||
)
|
)
|
||||||
with runner.mesh:
|
inference_runner = InferenceRunner(
|
||||||
logger.info("Compiling...")
|
name="inference",
|
||||||
rngs, last_output, memory = self.sample_step(
|
runner=runner,
|
||||||
params, rngs, last_output, memory, settings
|
load="path_to_load",
|
||||||
|
tokenizer_path="path_to_tokenizer_model",
|
||||||
|
local_mesh_config=(1, 1),
|
||||||
|
between_hosts_config=(1, 1),
|
||||||
)
|
)
|
||||||
logger.info("Done compiling.")
|
inference_runner.initialize()
|
||||||
|
request = Request(
|
||||||
all_tokens = []
|
prompt="Sample text",
|
||||||
free_slots = list(range(batch_size))
|
temperature=0.7,
|
||||||
requests = [None] * batch_size
|
nucleus_p=0.9,
|
||||||
first_output = [None] * batch_size
|
|
||||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
|
||||||
prev_token = last_output
|
|
||||||
step = 0
|
|
||||||
total_num_tokens = 0
|
|
||||||
total_num_sequences = 0
|
|
||||||
with mesh:
|
|
||||||
while True:
|
|
||||||
while free_slots:
|
|
||||||
request: Optional[Request] = yield
|
|
||||||
tokens = self.tokenizer.encode(request.prompt)
|
|
||||||
temperature = request.temperature
|
|
||||||
nucleus_p = request.nucleus_p
|
|
||||||
rng_seed = request.rng_seed
|
|
||||||
|
|
||||||
i = free_slots.pop()
|
|
||||||
prompt = np.array(tokens, dtype=np.int32)
|
|
||||||
prompt_len = len(prompt)
|
|
||||||
prompt = pad_to_size(prompt, self.get_pad_bucket(prompt.shape[0]))
|
|
||||||
# All tokens are allowed.
|
|
||||||
mask = np.ones((self.vocab_size,), dtype=np.int32)
|
|
||||||
|
|
||||||
new_settings = SampleSettings(
|
|
||||||
temperature=np.float32(temperature),
|
|
||||||
nucleus_p=np.float32(nucleus_p),
|
|
||||||
mask=mask,
|
|
||||||
active=np.ones((), dtype=np.int32),
|
|
||||||
)
|
|
||||||
rng_seed = np.uint64(rng_seed)
|
|
||||||
rngs, last_output, memory, settings = self.prefill_memory(
|
|
||||||
params,
|
|
||||||
rngs,
|
|
||||||
memory,
|
|
||||||
settings,
|
|
||||||
last_output,
|
|
||||||
prompt,
|
|
||||||
prompt_len,
|
|
||||||
rng_seed,
|
|
||||||
new_settings,
|
|
||||||
i,
|
|
||||||
)
|
|
||||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
|
||||||
first_output[i] = last_output
|
|
||||||
requests[i] = request
|
|
||||||
total_num_sequences += 1
|
|
||||||
|
|
||||||
rngs, last_output, memory = self.sample_step(
|
|
||||||
params, rngs, last_output, memory, settings
|
|
||||||
)
|
|
||||||
total_num_tokens += batch_size - len(free_slots)
|
|
||||||
|
|
||||||
# prev_token should already be on the host.
|
|
||||||
prev_token = jax.tree_map(np.array, prev_token)
|
|
||||||
for i in range(batch_size):
|
|
||||||
if requests[i] is not None:
|
|
||||||
if first_output[i] is not None:
|
|
||||||
first_output_i = jax.tree_map(np.array, first_output[i])
|
|
||||||
all_tokens.append(int(first_output_i.token_id[i][0]))
|
|
||||||
first_output[i] = None
|
|
||||||
continue
|
|
||||||
|
|
||||||
all_tokens.append(int(prev_token.token_id[i][0]))
|
|
||||||
cont = len(all_tokens) < requests[i].max_len
|
|
||||||
|
|
||||||
if not cont:
|
|
||||||
output_str = self.tokenizer.decode(all_tokens)
|
|
||||||
requests[i] = None
|
|
||||||
free_slots.append(i)
|
|
||||||
all_tokens = []
|
|
||||||
settings = settings._replace(active=settings.active.at[i].set(0))
|
|
||||||
yield output_str
|
|
||||||
|
|
||||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
|
||||||
prev_token = last_output
|
|
||||||
step += 1
|
|
||||||
|
|
||||||
|
|
||||||
def make_mesh(
|
|
||||||
local_mesh_config: tuple[int, ...], between_hosts_config: tuple[int, ...]
|
|
||||||
) -> jax.sharding.Mesh:
|
|
||||||
assert len(local_mesh_config) == 2
|
|
||||||
assert len(between_hosts_config) == 2
|
|
||||||
rank_logger.info("Detected %s devices in mesh", jax.device_count())
|
|
||||||
device_mesh = mesh_utils.create_hybrid_device_mesh(
|
|
||||||
local_mesh_config,
|
|
||||||
between_hosts_config,
|
|
||||||
devices=jax.devices(),
|
|
||||||
process_is_granule=True,
|
|
||||||
)
|
|
||||||
rank_logger.debug(re.sub("\n+", "\n", f"Job device mesh is:\n{device_mesh}"))
|
|
||||||
return jax.sharding.Mesh(device_mesh, ("data", "model"))
|
|
||||||
|
|
||||||
|
|
||||||
def sample_from_model(server, prompt, max_len, temperature):
|
|
||||||
next(server)
|
|
||||||
inp = Request(
|
|
||||||
prompt=prompt,
|
|
||||||
temperature=temperature,
|
|
||||||
nucleus_p=1.0,
|
|
||||||
rng_seed=42,
|
rng_seed=42,
|
||||||
max_len=max_len,
|
max_len=100,
|
||||||
)
|
)
|
||||||
return server.send(inp)
|
result = inference_runner.predict(request)
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
Loading…
Reference in New Issue
Block a user