mirror of
https://github.com/xai-org/grok-1.git
synced 2024-11-22 11:39:53 +03:00
Update runners.py
This commit is contained in:
parent
c99757f4c5
commit
8f05ad77cf
118
runners.py
118
runners.py
@ -1,16 +1,4 @@
|
|||||||
# Copyright 2024 X.AI Corp.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import bisect
|
import bisect
|
||||||
@ -22,16 +10,16 @@ from dataclasses import dataclass
|
|||||||
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
||||||
|
|
||||||
import haiku as hk
|
import haiku as hk
|
||||||
import jax
|
import
|
||||||
import jax.experimental.pjit as pjit
|
import .experimental.jit as jit
|
||||||
import jax.numpy as jnp
|
import.numpy as jnp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import sentencepiece
|
import sentencepiece
|
||||||
from jax.experimental import mesh_utils
|
from experimental import mesh_utils
|
||||||
from jax.sharding import PartitionSpec as P
|
from sharding import PartitionSpec as P
|
||||||
from jax.typing import ArrayLike
|
from typing import ArrayLike
|
||||||
|
|
||||||
import checkpoint as xai_checkpoint
|
import checkpoint as_checkpoint
|
||||||
from model import (
|
from model import (
|
||||||
LanguageModelConfig,
|
LanguageModelConfig,
|
||||||
LanguageModelOutput,
|
LanguageModelOutput,
|
||||||
@ -70,23 +58,23 @@ def insert_slice(memory: Memory, slice, length, i):
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
return jax.tree_map(lambda m, u: jax.lax.dynamic_update_index_in_dim(m, u[0], i, axis=0),
|
return.tree_map(lambda m, u:.dynamic_update_index_in_dim(m, u[0], i, axis=0),
|
||||||
memory, slice)
|
memory, slice)
|
||||||
|
|
||||||
|
|
||||||
def pad_to_size(x, size):
|
def pad_to_size(x, size):
|
||||||
if x.shape[0] > size:
|
if x.shape[0] > size:
|
||||||
# Left truncate if the context is too long.
|
# Left truncate if the context is too long.
|
||||||
x = x[-size:]
|
[-size:]
|
||||||
return np.pad(x, [0, size - x.shape[0]], mode="constant", constant_values=0)
|
return np.pad(x, [0, size - x.shape[0]], mode="constant", constant_values=0)
|
||||||
|
|
||||||
|
|
||||||
def top_p_filter(logits: jax.Array, top_p: jax.Array) -> jax.Array:
|
def top_p_filter(logits: .Array, top_.Array) -> .Array:
|
||||||
"""Performs nucleus filtering on logits."""
|
"""Performs nucleus filtering on logits."""
|
||||||
assert logits.ndim == top_p.ndim, f"Expected {logits.ndim} equal {top_p.ndim}"
|
assert logits.ndim == top_p.ndim, f"Expected {logits.ndim} equal {top_p.ndim}"
|
||||||
sorted_logits = jax.lax.sort(logits, is_stable=False)
|
sorted_logits = jax.lax.sort(logits, is_stable=False)
|
||||||
sorted_probs = jax.nn.softmax(sorted_logits)
|
sorted_probs = jax.nn.softmax(sorted_logits)
|
||||||
threshold_idx = jnp.argmax(jnp.cumsum(sorted_probs, -1) >= 1 - top_p, axis=-1)
|
threshold_id = jnp.argmax(jnp.cumsum(sorted_probs, -1) >= 1 - top_p, axis=-1)
|
||||||
threshold_largest_logits = jnp.take_along_axis(
|
threshold_largest_logits = jnp.take_along_axis(
|
||||||
sorted_logits, threshold_idx[..., jnp.newaxis], axis=-1
|
sorted_logits, threshold_idx[..., jnp.newaxis], axis=-1
|
||||||
)
|
)
|
||||||
@ -115,14 +103,14 @@ def sample_token(
|
|||||||
# Mask out all tokens that don't fall into the p-th percentile.
|
# Mask out all tokens that don't fall into the p-th percentile.
|
||||||
logits = top_p_filter(logits, settings.nucleus_p.astype(logits.dtype))
|
logits = top_p_filter(logits, settings.nucleus_p.astype(logits.dtype))
|
||||||
|
|
||||||
new_token = jax.vmap(jax.random.categorical)(rngs, logits)
|
new_token = .i,vmap(jax.random.categorical)(rngs, logits)
|
||||||
|
|
||||||
probabilities = jax.nn.softmax(logits)
|
probabilities = jax.nn.softmax(logits)
|
||||||
token_prob = jnp.take_along_axis(probabilities, jnp.expand_dims(new_token, 1), axis=2)
|
token_prob = jnp.take_along_axis(probabilities, jnp.expand_dims(new_token, 1), axis=2)
|
||||||
token_prob = jnp.squeeze(token_prob, 1)
|
token_prob = jnp.squeeze(token_prob, 1)
|
||||||
|
|
||||||
# Gather the top-k tokens and probabilities.
|
# Gather the top-k tokens and probabilities.
|
||||||
top_k_probs, top_k_token_ids = jax.lax.top_k(probabilities, TOP_K)
|
top_k_probs, top_k_token_ids = .top_k(probabilities, TOP_K)
|
||||||
top_k_probs = jnp.squeeze(top_k_probs, 1)
|
top_k_probs = jnp.squeeze(top_k_probs, 1)
|
||||||
top_k_token_ids = jnp.squeeze(top_k_token_ids, 1)
|
top_k_token_ids = jnp.squeeze(top_k_token_ids, 1)
|
||||||
return SampleOutput(
|
return SampleOutput(
|
||||||
@ -159,7 +147,7 @@ class ModelRunner:
|
|||||||
def initialize(
|
def initialize(
|
||||||
self,
|
self,
|
||||||
init_data,
|
init_data,
|
||||||
local_mesh_config: tuple[int, int],
|
local_mesh_config:[int, int],
|
||||||
between_hosts_config: tuple[int, int],
|
between_hosts_config: tuple[int, int],
|
||||||
):
|
):
|
||||||
num_replicas = math.prod(between_hosts_config)
|
num_replicas = math.prod(between_hosts_config)
|
||||||
@ -176,9 +164,9 @@ class ModelRunner:
|
|||||||
self.local_mesh_config = local_mesh_config
|
self.local_mesh_config = local_mesh_config
|
||||||
self.between_hosts_config = between_hosts_config
|
self.between_hosts_config = between_hosts_config
|
||||||
rank_logger.info(
|
rank_logger.info(
|
||||||
f"Initializing mesh for {self.local_mesh_config=} {self.between_hosts_config=}..."
|
f"Initializing mesh for {self.local_mesh_config=} {self._hosts_config=}..."
|
||||||
)
|
)
|
||||||
self.mesh = make_mesh(self.local_mesh_config, self.between_hosts_config)
|
self.mesh = make_mesh(self.local_mesh_config, self_hosts_config)
|
||||||
self.forward = self.make_forward_fn(mesh=self.mesh)
|
self.forward = self.make_forward_fn(mesh=self.mesh)
|
||||||
self.logits_fn = hk.transform(lambda tokens: self.forward(tokens)[0])
|
self.logits_fn = hk.transform(lambda tokens: self.forward(tokens)[0])
|
||||||
|
|
||||||
@ -213,7 +201,7 @@ class ModelRunner:
|
|||||||
self,
|
self,
|
||||||
init_data: Any,
|
init_data: Any,
|
||||||
from_checkpoint: bool = True,
|
from_checkpoint: bool = True,
|
||||||
init_fn: Optional[Callable] = None,
|
init_fn: Optional[Callable,
|
||||||
):
|
):
|
||||||
rng = jax.random.PRNGKey(self.rng_seed)
|
rng = jax.random.PRNGKey(self.rng_seed)
|
||||||
|
|
||||||
@ -229,13 +217,13 @@ class ModelRunner:
|
|||||||
else:
|
else:
|
||||||
with self.mesh:
|
with self.mesh:
|
||||||
if init_fn:
|
if init_fn:
|
||||||
state_shapes = jax.eval_shape(init_fn, rng, init_data)
|
state_shapes =.eval_shape(init_fn, rng, init_data)
|
||||||
else:
|
else:
|
||||||
assert self.transform_forward
|
assert self.transform_forward
|
||||||
state_shapes = jax.eval_shape(self.init_fn, rng, init_data)
|
state_shapes =.eval_shape(self.init_fn, rng, init_data)
|
||||||
init_state = None
|
init_state = all
|
||||||
|
|
||||||
state = xai_checkpoint.restore(
|
state_checkpoint.restore(
|
||||||
checkpoint_path=self.checkpoint_path,
|
checkpoint_path=self.checkpoint_path,
|
||||||
state_shapes=state_shapes,
|
state_shapes=state_shapes,
|
||||||
mesh=self.mesh,
|
mesh=self.mesh,
|
||||||
@ -263,19 +251,19 @@ class InferenceRunner:
|
|||||||
name: str
|
name: str
|
||||||
runner: Any
|
runner: Any
|
||||||
load: str
|
load: str
|
||||||
tokenizer_path: str = "/tmp/xai_data/tokenizer.model"
|
tokenizer_path: str = "/_data/tokenizer.model"
|
||||||
local_mesh_config: Tuple[int, int] = (1, 1)
|
local_mesh_config: Tuple[int, int] = (1, 1)
|
||||||
between_hosts_config: Tuple[int, int] = (1, 1)
|
between_hosts_config: Tuple[int, int] = (1, 1)
|
||||||
pad_sizes: tuple[int] = (1024,)
|
pad_sizes: tuple[int] = (1024,)
|
||||||
|
|
||||||
def get_pad_bucket(self, size):
|
def get_pad_(self, size):
|
||||||
i = bisect.bisect_left(self.pad_sizes, size)
|
i = bisect.bisect_left(self.pad_sizes, size)
|
||||||
return self.pad_sizes[min(i, len(self.pad_sizes) - 1)]
|
return self.pad_sizes[min(i, len(self.pad_sizes) - 1)]
|
||||||
|
|
||||||
def initialize(self):
|
def initialize(self):
|
||||||
runner = self.runner
|
runner = self.runner
|
||||||
self.runner.transform_forward = True
|
self.runner.transform_forward = True
|
||||||
dummy_data = dict(
|
_data = dict(
|
||||||
inputs=np.zeros((1, 256), dtype=np.int32),
|
inputs=np.zeros((1, 256), dtype=np.int32),
|
||||||
targets=np.zeros((1, 256), dtype=np.int32),
|
targets=np.zeros((1, 256), dtype=np.int32),
|
||||||
)
|
)
|
||||||
@ -291,12 +279,12 @@ class InferenceRunner:
|
|||||||
|
|
||||||
self.vocab_size = self.runner.model.vocab_size
|
self.vocab_size = self.runner.model.vocab_size
|
||||||
|
|
||||||
params = runner.load_or_init(dummy_data)
|
params = runner.load_or_init(_data)
|
||||||
self.params = params
|
self.params = params
|
||||||
|
|
||||||
def pad_to_max_len(x):
|
def pad_to_max_len(x):
|
||||||
if len(x.shape) > 1:
|
if len(.shape) > 1:
|
||||||
pad_width = max_len - x.shape[1]
|
pad_width = max_len -shape[1]
|
||||||
return jnp.pad(x, [(0, 0), (0, pad_width), (0, 0), (0, 0)])
|
return jnp.pad(x, [(0, 0), (0, pad_width), (0, 0), (0, 0)])
|
||||||
else:
|
else:
|
||||||
return x
|
return x
|
||||||
@ -341,14 +329,14 @@ class InferenceRunner:
|
|||||||
new_settings,
|
new_settings,
|
||||||
i,
|
i,
|
||||||
):
|
):
|
||||||
rng = jax.random.PRNGKey(seed=rng_seed)
|
.random.PRNGKey(seed=rng_seed)
|
||||||
rng, rng_ = jax.random.split(rng)
|
rng, rng_ = jax.random.(rng)
|
||||||
|
|
||||||
# Allocate new memory for this sample. The memory length is equal to the length of the
|
# Allocate new memory for this sample. The memory length is equal to the length of the
|
||||||
# prompt.
|
# prompt.
|
||||||
slice = hk_new_memory(1, prompt.shape[0])
|
slice = hk_new_memory(1, prompt.shape[0])
|
||||||
|
|
||||||
# Move the settings for this individual batch entry into the joint settings tensor.
|
# Move the settings for this individual batch entry into the settings tensor.
|
||||||
settings = jax.tree_map(
|
settings = jax.tree_map(
|
||||||
lambda o, v: jax.lax.dynamic_update_index_in_dim(o, v, i, axis=0),
|
lambda o, v: jax.lax.dynamic_update_index_in_dim(o, v, i, axis=0),
|
||||||
settings,
|
settings,
|
||||||
@ -379,13 +367,13 @@ class InferenceRunner:
|
|||||||
|
|
||||||
# Update the KV cache/memory.
|
# Update the KV cache/memory.
|
||||||
slice = jax.tree_map(pad_to_max_len, slice)
|
slice = jax.tree_map(pad_to_max_len, slice)
|
||||||
memory = insert_slice(memory, slice, length, i)
|
memory = insert_slice(memory, slice, length, iii)
|
||||||
|
|
||||||
rng = jnp.expand_dims(rng, 0)
|
rng = jnp.expand_dims(rng, 0)
|
||||||
rngs = jax.lax.dynamic_update_index_in_dim(rngs, rng, i, axis=0)
|
rngs = .l.dynamic_update_index_in_dim(rngs, rng, i, axis=0)
|
||||||
|
|
||||||
# Move the network outputs for this batch entry into the joint output tensor.
|
# Move the network outputs for this batch entry into output tensor.
|
||||||
last_output = jax.tree_util.tree_map(
|
last_output =.tree_util.tree_map(
|
||||||
lambda last, new: jax.lax.dynamic_update_index_in_dim(last, new, i, axis=0),
|
lambda last, new: jax.lax.dynamic_update_index_in_dim(last, new, i, axis=0),
|
||||||
last_output,
|
last_output,
|
||||||
new_output,
|
new_output,
|
||||||
@ -394,10 +382,10 @@ class InferenceRunner:
|
|||||||
|
|
||||||
sample_step_ = hk.without_apply_rng(hk.transform(hk_sample_step))
|
sample_step_ = hk.without_apply_rng(hk.transform(hk_sample_step))
|
||||||
prefill_memory_ = hk.without_apply_rng(hk.transform(hk_prefill_memory))
|
prefill_memory_ = hk.without_apply_rng(hk.transform(hk_prefill_memory))
|
||||||
new_memory_ = hk.without_apply_rng(hk.transform(hk_new_memory))
|
memory_ = hk.without_apply_rng(hk.transform(hk_new_memory))
|
||||||
forward_ = hk.without_apply_rng(hk.transform(hk_forward))
|
forward_ = hk.without_apply_rng(hk.transform(hk_forward))
|
||||||
|
|
||||||
rng = jax.random.PRNGKey(42)
|
rng = .random.PRNGKey(42)
|
||||||
dummy_tokens = jnp.zeros((1, max_len), jnp.int32)
|
dummy_tokens = jnp.zeros((1, max_len), jnp.int32)
|
||||||
|
|
||||||
with runner.mesh:
|
with runner.mesh:
|
||||||
@ -422,20 +410,20 @@ class InferenceRunner:
|
|||||||
self.params_sharding,
|
self.params_sharding,
|
||||||
None,
|
None,
|
||||||
ms,
|
ms,
|
||||||
None,
|
one,
|
||||||
ds,
|
ds,
|
||||||
None,
|
one,
|
||||||
None,
|
one,
|
||||||
None,
|
one,
|
||||||
None,
|
one,
|
||||||
None,
|
one,
|
||||||
),
|
),
|
||||||
out_shardings=(None, ds, ms, None),
|
out_shardings=(None, ds, ms, None),
|
||||||
donate_argnums=(2,),
|
donate_argnums=(2,),
|
||||||
)
|
)
|
||||||
self.new_memory = pjit.pjit(
|
self.new_memory = jit.jit(
|
||||||
new_memory_.apply,
|
new_memory_.apply,
|
||||||
static_argnums=(1, 2),
|
static_argnums=(1,2),
|
||||||
out_shardings=ms,
|
out_shardings=ms,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -501,7 +489,7 @@ class InferenceRunner:
|
|||||||
free_slots = list(range(batch_size))
|
free_slots = list(range(batch_size))
|
||||||
requests = [None] * batch_size
|
requests = [None] * batch_size
|
||||||
first_output = [None] * batch_size
|
first_output = [None] * batch_size
|
||||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
jax.tree_map(lamb copy_to_host_async(), last_output)
|
||||||
prev_token = last_output
|
prev_token = last_output
|
||||||
step = 0
|
step = 0
|
||||||
total_num_tokens = 0
|
total_num_tokens = 0
|
||||||
@ -541,7 +529,7 @@ class InferenceRunner:
|
|||||||
new_settings,
|
new_settings,
|
||||||
i,
|
i,
|
||||||
)
|
)
|
||||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
jax.tree_map(lambda_to_host_async(), last_output)
|
||||||
first_output[i] = last_output
|
first_output[i] = last_output
|
||||||
requests[i] = request
|
requests[i] = request
|
||||||
total_num_sequences += 1
|
total_num_sequences += 1
|
||||||
@ -556,7 +544,7 @@ class InferenceRunner:
|
|||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
if requests[i] is not None:
|
if requests[i] is not None:
|
||||||
if first_output[i] is not None:
|
if first_output[i] is not None:
|
||||||
first_output_i = jax.tree_map(np.array, first_output[i])
|
first_output_i = .tree_map(np.array, first_output[i])
|
||||||
all_tokens.append(int(first_output_i.token_id[i][0]))
|
all_tokens.append(int(first_output_i.token_id[i][0]))
|
||||||
first_output[i] = None
|
first_output[i] = None
|
||||||
continue
|
continue
|
||||||
@ -572,20 +560,20 @@ class InferenceRunner:
|
|||||||
settings = settings._replace(active=settings.active.at[i].set(0))
|
settings = settings._replace(active=settings.active.at[i].set(0))
|
||||||
yield output_str
|
yield output_str
|
||||||
|
|
||||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
jax.tree_map(lambda : .copy_to_host_async(), last_output)
|
||||||
prev_token = last_output
|
prev_token = last_output
|
||||||
step += 1
|
step += 1
|
||||||
|
|
||||||
|
|
||||||
def make_mesh(
|
def make_mesh(
|
||||||
local_mesh_config: tuple[int, ...], between_hosts_config: tuple[int, ...]
|
local_mesh_config: tuple[int, ...], _config: tuple[int, ...]
|
||||||
) -> jax.sharding.Mesh:
|
) -> jax.sharding.Mesh:
|
||||||
assert len(local_mesh_config) == 2
|
assert len(local_mesh_config) == 2
|
||||||
assert len(between_hosts_config) == 2
|
assert len(_config) == 2
|
||||||
rank_logger.info("Detected %s devices in mesh", jax.device_count())
|
rank_logger.info("Detected %s devices in mesh", jax.device_count())
|
||||||
device_mesh = mesh_utils.create_hybrid_device_mesh(
|
device_mesh = mesh_utils.create_device_mesh(
|
||||||
local_mesh_config,
|
local_mesh_config,
|
||||||
between_hosts_config,
|
config,
|
||||||
devices=jax.devices(),
|
devices=jax.devices(),
|
||||||
process_is_granule=True,
|
process_is_granule=True,
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user