mirror of
https://github.com/xai-org/grok-1.git
synced 2024-11-26 21:49:53 +03:00
Updated docstring for run.py
This commit is contained in:
parent
2d92966a1f
commit
88da8c077a
21
run.py
21
run.py
@ -22,6 +22,27 @@ CKPT_PATH = "./checkpoints/"
|
|||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
"""
|
||||||
|
Initializes and runs a text generation model using predefined model configurations and inference settings.
|
||||||
|
|
||||||
|
This function sets up a language model with specific configurations, including model architecture details
|
||||||
|
(e.g., embedding sizes, number of layers, attention heads, and MoE settings) and text generation settings
|
||||||
|
(e.g., vocabulary size, token identifiers). It initializes an inference runner with the model, checkpoint
|
||||||
|
path, tokenizer, and mesh configuration. The inference runner is then used to generate text based on a
|
||||||
|
given prompt and output the result.
|
||||||
|
|
||||||
|
The process involves:
|
||||||
|
- Creating a `LanguageModelConfig` instance with specified model parameters, including transformer
|
||||||
|
configurations and quantization settings for weights.
|
||||||
|
- Initializing an `InferenceRunner` with the model configuration, batch size per device, checkpoint path,
|
||||||
|
and other relevant settings.
|
||||||
|
- Calling the `initialize` method on the inference runner to prepare the model and tokenizer for inference.
|
||||||
|
- Generating text based on a provided prompt using the `sample_from_model` function, which internally
|
||||||
|
manages the sampling process through the inference runner.
|
||||||
|
|
||||||
|
Output:
|
||||||
|
- Prints the generated text continuation for a prompt to the standard output.
|
||||||
|
"""
|
||||||
grok_1_model = LanguageModelConfig(
|
grok_1_model = LanguageModelConfig(
|
||||||
vocab_size=128 * 1024,
|
vocab_size=128 * 1024,
|
||||||
pad_token=0,
|
pad_token=0,
|
||||||
|
Loading…
Reference in New Issue
Block a user