1
0
mirror of https://github.com/SoftEtherVPN/SoftEtherVPN.git synced 2025-06-28 03:45:08 +03:00
SoftEtherVPN/src/Mayaqua/Encrypt.c
2025-04-16 15:11:53 +09:00

7361 lines
142 KiB
C

// SoftEther VPN Source Code - Stable Edition Repository
// Mayaqua Kernel
//
// SoftEther VPN Server, Client and Bridge are free software under the Apache License, Version 2.0.
//
// Copyright (c) Daiyuu Nobori.
// Copyright (c) SoftEther VPN Project, University of Tsukuba, Japan.
// Copyright (c) SoftEther Corporation.
// Copyright (c) all contributors on SoftEther VPN project in GitHub.
//
// All Rights Reserved.
//
// http://www.softether.org/
//
// This stable branch is officially managed by Daiyuu Nobori, the owner of SoftEther VPN Project.
// Pull requests should be sent to the Developer Edition Master Repository on https://github.com/SoftEtherVPN/SoftEtherVPN
//
// License: The Apache License, Version 2.0
// https://www.apache.org/licenses/LICENSE-2.0
//
// DISCLAIMER
// ==========
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// THIS SOFTWARE IS DEVELOPED IN JAPAN, AND DISTRIBUTED FROM JAPAN, UNDER
// JAPANESE LAWS. YOU MUST AGREE IN ADVANCE TO USE, COPY, MODIFY, MERGE, PUBLISH,
// DISTRIBUTE, SUBLICENSE, AND/OR SELL COPIES OF THIS SOFTWARE, THAT ANY
// JURIDICAL DISPUTES WHICH ARE CONCERNED TO THIS SOFTWARE OR ITS CONTENTS,
// AGAINST US (SOFTETHER PROJECT, SOFTETHER CORPORATION, DAIYUU NOBORI OR OTHER
// SUPPLIERS), OR ANY JURIDICAL DISPUTES AGAINST US WHICH ARE CAUSED BY ANY KIND
// OF USING, COPYING, MODIFYING, MERGING, PUBLISHING, DISTRIBUTING, SUBLICENSING,
// AND/OR SELLING COPIES OF THIS SOFTWARE SHALL BE REGARDED AS BE CONSTRUED AND
// CONTROLLED BY JAPANESE LAWS, AND YOU MUST FURTHER CONSENT TO EXCLUSIVE
// JURISDICTION AND VENUE IN THE COURTS SITTING IN TOKYO, JAPAN. YOU MUST WAIVE
// ALL DEFENSES OF LACK OF PERSONAL JURISDICTION AND FORUM NON CONVENIENS.
// PROCESS MAY BE SERVED ON EITHER PARTY IN THE MANNER AUTHORIZED BY APPLICABLE
// LAW OR COURT RULE.
//
// USE ONLY IN JAPAN. DO NOT USE THIS SOFTWARE IN ANOTHER COUNTRY UNLESS YOU HAVE
// A CONFIRMATION THAT THIS SOFTWARE DOES NOT VIOLATE ANY CRIMINAL LAWS OR CIVIL
// RIGHTS IN THAT PARTICULAR COUNTRY. USING THIS SOFTWARE IN OTHER COUNTRIES IS
// COMPLETELY AT YOUR OWN RISK. THE SOFTETHER VPN PROJECT HAS DEVELOPED AND
// DISTRIBUTED THIS SOFTWARE TO COMPLY ONLY WITH THE JAPANESE LAWS AND EXISTING
// CIVIL RIGHTS INCLUDING PATENTS WHICH ARE SUBJECTS APPLY IN JAPAN. OTHER
// COUNTRIES' LAWS OR CIVIL RIGHTS ARE NONE OF OUR CONCERNS NOR RESPONSIBILITIES.
// WE HAVE NEVER INVESTIGATED ANY CRIMINAL REGULATIONS, CIVIL LAWS OR
// INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENTS IN ANY OF OTHER 200+ COUNTRIES
// AND TERRITORIES. BY NATURE, THERE ARE 200+ REGIONS IN THE WORLD, WITH
// DIFFERENT LAWS. IT IS IMPOSSIBLE TO VERIFY EVERY COUNTRIES' LAWS, REGULATIONS
// AND CIVIL RIGHTS TO MAKE THE SOFTWARE COMPLY WITH ALL COUNTRIES' LAWS BY THE
// PROJECT. EVEN IF YOU WILL BE SUED BY A PRIVATE ENTITY OR BE DAMAGED BY A
// PUBLIC SERVANT IN YOUR COUNTRY, THE DEVELOPERS OF THIS SOFTWARE WILL NEVER BE
// LIABLE TO RECOVER OR COMPENSATE SUCH DAMAGES, CRIMINAL OR CIVIL
// RESPONSIBILITIES. NOTE THAT THIS LINE IS NOT LICENSE RESTRICTION BUT JUST A
// STATEMENT FOR WARNING AND DISCLAIMER.
//
// READ AND UNDERSTAND THE 'WARNING.TXT' FILE BEFORE USING THIS SOFTWARE.
// SOME SOFTWARE PROGRAMS FROM THIRD PARTIES ARE INCLUDED ON THIS SOFTWARE WITH
// LICENSE CONDITIONS WHICH ARE DESCRIBED ON THE 'THIRD_PARTY.TXT' FILE.
//
//
// SOURCE CODE CONTRIBUTION
// ------------------------
//
// Your contribution to SoftEther VPN Project is much appreciated.
// Please send patches to us through GitHub.
// Read the SoftEther VPN Patch Acceptance Policy in advance:
// http://www.softether.org/5-download/src/9.patch
//
//
// DEAR SECURITY EXPERTS
// ---------------------
//
// If you find a bug or a security vulnerability please kindly inform us
// about the problem immediately so that we can fix the security problem
// to protect a lot of users around the world as soon as possible.
//
// Our e-mail address for security reports is:
// softether-vpn-security [at] softether.org
//
// Please note that the above e-mail address is not a technical support
// inquiry address. If you need technical assistance, please visit
// http://www.softether.org/ and ask your question on the users forum.
//
// Thank you for your cooperation.
//
//
// NO MEMORY OR RESOURCE LEAKS
// ---------------------------
//
// The memory-leaks and resource-leaks verification under the stress
// test has been passed before release this source code.
// Encrypt.c
// Encryption and digital certification routine
#include <GlobalConst.h>
#define ENCRYPT_C
#define __WINCRYPT_H__
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <stdarg.h>
#include <time.h>
#include <errno.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/engine.h>
#include <openssl/bio.h>
#include <openssl/x509.h>
#include <openssl/pkcs7.h>
#include <openssl/pkcs12.h>
#include <openssl/rc4.h>
#include <openssl/md5.h>
#include <openssl/md4.h>
#include <openssl/hmac.h>
#include <openssl/sha.h>
#include <openssl/des.h>
#include <openssl/aes.h>
#include <openssl/dh.h>
#include <openssl/pem.h>
#include <openssl/conf.h>
#include <openssl/x509v3.h>
#include <openssl/ocsp.h>
#include <openssl/ocsperr.h>
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
#include <openssl/provider.h>
#endif // OPENSSL_VERSION_NUMBER
#include <Mayaqua/Mayaqua.h>
#ifdef USE_INTEL_AESNI_LIBRARY
#include <intelaes/iaesni.h>
#endif // USE_INTEL_AESNI_LIBRARY
LOCK *openssl_lock = NULL;
int ssl_clientcert_index = 0;
LOCK **ssl_lock_obj = NULL;
UINT ssl_lock_num;
static bool openssl_inited = false;
static bool is_intel_aes_supported = false;
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
static OSSL_PROVIDER* ossl_provider_legacy = NULL;
static OSSL_PROVIDER* ossl_provider_default = NULL;
#endif
static unsigned char *Internal_SHA0(const unsigned char *d, size_t n, unsigned char *md);
// For the callback function
typedef struct CB_PARAM
{
char *password;
} CB_PARAM;
LIST* BufToXList(BUF* b)
{
LIST* ret;
UINT mode = 0;
BUF* current_buf;
if (b == NULL)
{
return NULL;
}
SeekBufToBegin(b);
ret = NewList(NULL);
current_buf = NewBuf();
while (true)
{
char* line = CfgReadNextLine(b);
if (line == NULL)
{
break;
}
if (mode == 0 && StrCmpi(line, "-----BEGIN CERTIFICATE-----") == 0)
{
mode = 1;
WriteBuf(current_buf, line, StrLen(line));
WriteBuf(current_buf, "\n", 1);
}
else if (mode == 1)
{
if (StrCmpi(line, "-----END CERTIFICATE-----") == 0)
{
mode = 0;
}
WriteBuf(current_buf, line, StrLen(line));
WriteBuf(current_buf, "\n", 1);
if (mode == 0)
{
X* x = BufToX(current_buf, true);
if (x != NULL)
{
Add(ret, x);
}
FreeBuf(current_buf);
current_buf = NewBuf();
}
}
Free(line);
}
FreeBuf(current_buf);
if (LIST_NUM(ret) == 0)
{
ReleaseList(ret);
return NULL;
}
return ret;
}
void FreeXList(LIST* o)
{
UINT i;
if (o == NULL)
{
return;
}
for (i = 0;i < LIST_NUM(o);i++)
{
X* x = LIST_DATA(o, i);
FreeX(x);
}
ReleaseList(o);
}
bool CheckCertsAndKey(CERTS_AND_KEY* c)
{
X* x;
K* k;
if (c == NULL)
{
return false;
}
if (LIST_NUM(c->CertList) == 0)
{
return false;
}
x = LIST_DATA(c->CertList, 0);
k = c->Key;
return CheckXandK(x, k);
}
bool CertsAndKeyAlwaysUseCallback(char* sni_name, void* param)
{
return true;
}
CERTS_AND_KEY* CloneCertsAndKey(CERTS_AND_KEY* c)
{
CERTS_AND_KEY* ret;
if (c == NULL)
{
return NULL;
}
ret = NewCertsAndKeyFromObjects(c->CertList, c->Key, false);
return ret;
}
UINT64 GetCertsAndKeyListHash(LIST* o)
{
UINT i;
UINT64 ret = 0;
if (o == NULL)
{
return 0;
}
for (i = 0;i < LIST_NUM(o);i++)
{
CERTS_AND_KEY* c = LIST_DATA(o, i);
UINT64 hash = GetCertsAndKeyHash(c);
ret += hash;
ret *= GOLDEN_PRIME_NUMBER;
}
if (ret == 0) ret = 1;
return ret;
}
void FreeCertsAndKeyList(LIST* o)
{
UINT i;
if (o == NULL)
{
return;
}
for (i = 0;i < LIST_NUM(o);i++)
{
CERTS_AND_KEY* s = LIST_DATA(o, i);
ReleaseCertsAndKey(s);
}
ReleaseList(o);
}
LIST* CloneCertsAndKeyList(LIST* o)
{
LIST* ret;
UINT i;
if (o == NULL)
{
return NULL;
}
ret = NewList(NULL);
for (i = 0;i < LIST_NUM(o);i++)
{
CERTS_AND_KEY* s = LIST_DATA(o, i);
if (s != NULL)
{
CERTS_AND_KEY* d = s;
AddRef(d->Ref);
Add(ret, d);
}
}
return ret;
}
UINT64 GetCertsAndKeyHash(CERTS_AND_KEY* c)
{
UINT64 ret;
if (c == NULL)
{
return 0;
}
ret = c->HashCache;
ret += (UINT64)c->DetermineUseCallback;
if (ret == 0) ret = 1;
return ret;
}
UINT64 CalcCertsAndKeyHashCache(CERTS_AND_KEY* c)
{
BUF* buf;
UINT i;
BUF *key_buf;
UCHAR hash[SHA1_SIZE] = CLEAN;
UINT64 ret;
if (c == NULL)
{
return 0;
}
buf = NewBuf();
for (i = 0;i < LIST_NUM(c->CertList);i++)
{
X* x = LIST_DATA(c->CertList, i);
UCHAR sha1[SHA1_SIZE] = CLEAN;
GetXDigest(x, sha1, true);
WriteBuf(buf, sha1, SHA1_SIZE);
}
key_buf = KToBuf(c->Key, true, NULL);
WriteBufBuf(buf, key_buf);
FreeBuf(key_buf);
HashSha1(hash, buf->Buf, buf->Size);
FreeBuf(buf);
ret = READ_UINT64(hash);
if (ret == 0) ret = 1;
return ret;
}
void UpdateCertsAndKeyHashCacheAndCheckedState(CERTS_AND_KEY* c)
{
if (c == NULL)
{
return;
}
c->HashCache = CalcCertsAndKeyHashCache(c);
c->HasValidPrivateKey = CheckCertsAndKey(c);
}
CERTS_AND_KEY* NewCertsAndKeyFromDir(wchar_t* dir_name)
{
CERTS_AND_KEY* ret = NULL;
BUF* key_buf = NULL;
wchar_t key_fn[MAX_PATH] = CLEAN;
UINT i;
if (dir_name == NULL)
{
return NULL;
}
ret = ZeroMalloc(sizeof(CERTS_AND_KEY));
ret->Ref = NewRef();
ret->CertList = NewListFast(NULL);
CombinePathW(key_fn, sizeof(key_fn), dir_name, L"cert.key");
key_buf = ReadDumpW(key_fn);
ret->Key = BufToK(key_buf, true, true, NULL);
if (ret->Key == NULL)
{
goto L_ERROR;
}
for (i = 0;;i++)
{
wchar_t cert_fn[MAX_PATH] = CLEAN;
wchar_t tmp[MAX_PATH] = CLEAN;
BUF* cert_buf;
X* x;
UniFormat(tmp, sizeof(tmp), L"cert_%04u.cer", i);
CombinePathW(cert_fn, sizeof(cert_fn), dir_name, tmp);
cert_buf = ReadDumpW(cert_fn);
if (cert_buf == NULL)
{
break;
}
x = BufToX(cert_buf, true);
if (x != NULL)
{
Add(ret->CertList, x);
}
FreeBuf(cert_buf);
}
if (LIST_NUM(ret->CertList) == 0)
{
goto L_ERROR;
}
FreeBuf(key_buf);
UpdateCertsAndKeyHashCacheAndCheckedState(ret);
return ret;
L_ERROR:
ReleaseCertsAndKey(ret);
FreeBuf(key_buf);
return NULL;
}
bool SaveCertsAndKeyToDir(CERTS_AND_KEY* c, wchar_t* dir)
{
wchar_t tmp[MAX_PATH] = CLEAN;
wchar_t tmp2[MAX_PATH] = CLEAN;
bool ret = true;
LIST* filename_list;
UINT count;
if (c == NULL || dir == NULL)
{
return false;
}
filename_list = NewList(NULL);
MakeDirExW(dir);
// サーバーから受信した証明書情報の websocket_certs_cache ディレクトリへの書き込み
count = LIST_NUM(c->CertList);
if (count >= 1)
{
BUF* key_buf = KToBuf(c->Key, true, NULL);
if (key_buf != NULL && key_buf->Size >= 1)
{
UINT i;
for (i = 0;i < count;i++)
{
X* x = LIST_DATA(c->CertList, i);
if (x != NULL)
{
BUF* cert_buf = XToBuf(x, true);
if (cert_buf != NULL)
{
UniFormat(tmp2, sizeof(tmp2), L"cert_%04u.cer", i);
CombinePathW(tmp, sizeof(tmp), dir, tmp2);
if (DumpBufWIfNecessary(cert_buf, tmp) == false)
{
ret = false;
}
AddUniStrToUniStrList(filename_list, tmp2);
}
FreeBuf(cert_buf);
}
}
CombinePathW(tmp, sizeof(tmp), dir, L"cert.key");
if (DumpBufWIfNecessary(key_buf, tmp) == false)
{
ret = false;
}
}
FreeBuf(key_buf);
}
else
{
ret = false;
}
// websocket_certs_cache ディレクトリにある不要ファイルの削除
if (LIST_NUM(filename_list) >= 1)
{
DIRLIST* dirlist = EnumDirW(dir);
if (dirlist != NULL)
{
UINT i;
for (i = 0;i < dirlist->NumFiles;i++)
{
DIRENT* f = dirlist->File[i];
if (UniStartWith(f->FileNameW, L"cert_") && UniEndWith(f->FileNameW, L".cer"))
{
if (IsInListUniStr(filename_list, f->FileNameW) == false)
{
CombinePathW(tmp, sizeof(tmp), dir, f->FileNameW);
FileDeleteW(tmp);
}
}
}
}
FreeDir(dirlist);
}
FreeStrList(filename_list);
return ret;
}
CERTS_AND_KEY* NewCertsAndKeyFromObjectSingle(X* cert, K* key, bool fast)
{
LIST* cert_list;
CERTS_AND_KEY* ret;
if (cert == NULL || key == NULL)
{
return NULL;
}
cert_list = NewList(NULL);
Add(cert_list, cert);
ret = NewCertsAndKeyFromObjects(cert_list, key, fast);
ReleaseList(cert_list);
return ret;
}
CERTS_AND_KEY* NewCertsAndKeyFromObjects(LIST* cert_list, K* key, bool fast)
{
UINT i;
UINT64 fast_hash = 1;
CERTS_AND_KEY* ret = NULL;
if (cert_list == NULL || LIST_NUM(cert_list) == 0 || key == NULL)
{
return NULL;
}
ret = ZeroMalloc(sizeof(CERTS_AND_KEY));
ret->Ref = NewRef();
ret->CertList = NewListFast(NULL);
if (fast == false)
{
ret->Key = CloneK(key);
}
else
{
ret->Key = CloneKFast(key);
fast_hash += (UINT64)(key->pkey);
fast_hash *= GOLDEN_PRIME_NUMBER;
}
if (ret->Key == NULL) goto L_ERROR;
for (i = 0;i < LIST_NUM(cert_list);i++)
{
X* clone_x;
X* x = LIST_DATA(cert_list, i);
if (x == NULL) goto L_ERROR;
if (fast == false)
{
clone_x = CloneX(x);
}
else
{
clone_x = CloneXFast(x);
fast_hash += (UINT64)(x->x509);
fast_hash *= GOLDEN_PRIME_NUMBER;
}
Add(ret->CertList, clone_x);
}
if (fast == false)
{
UpdateCertsAndKeyHashCacheAndCheckedState(ret);
}
else
{
ret->HashCache = fast_hash;
ret->HasValidPrivateKey = true;
}
return ret;
L_ERROR:
ReleaseCertsAndKey(ret);
return NULL;
}
CERTS_AND_KEY* NewCertsAndKeyFromMemory(LIST* cert_buf_list, BUF* key_buf)
{
UINT i;
CERTS_AND_KEY* ret = NULL;
if (cert_buf_list == NULL || LIST_NUM(cert_buf_list) == 0 || key_buf == NULL)
{
return NULL;
}
ret = ZeroMalloc(sizeof(CERTS_AND_KEY));
ret->Ref = NewRef();
ret->CertList = NewListFast(NULL);
ret->Key = BufToK(key_buf, true, true, NULL);
if (ret->Key == NULL) goto L_ERROR;
for (i = 0;i < LIST_NUM(cert_buf_list);i++)
{
BUF* b = LIST_DATA(cert_buf_list, i);
X* x = BufToX(b, true);
if (x == NULL) goto L_ERROR;
Add(ret->CertList, x);
}
UpdateCertsAndKeyHashCacheAndCheckedState(ret);
return ret;
L_ERROR:
ReleaseCertsAndKey(ret);
return NULL;
}
void ReleaseCertsAndKey(CERTS_AND_KEY* c)
{
if (c == NULL)
{
return;
}
if (Release(c->Ref) == 0)
{
CleanupCertsAndKey(c);
}
}
void CleanupCertsAndKey(CERTS_AND_KEY* c)
{
UINT i;
if (c == NULL)
{
return;
}
for (i = 0; i < LIST_NUM(c->CertList);i++)
{
X* x = LIST_DATA(c->CertList, i);
FreeX(x);
}
FreeK(c->Key);
ReleaseList(c->CertList);
Free(c);
}
// 証明書が特定のディレクトリの CRL によって無効化されているかどうか確認する
bool IsXRevoked(X *x)
{
char dirname[MAX_PATH];
UINT i;
bool ret = false;
DIRLIST *t;
// 引数チェック
if (x == NULL)
{
return false;
}
GetExeDir(dirname, sizeof(dirname));
// CRL ファイルの検索
t = EnumDir(dirname);
for (i = 0;i < t->NumFiles;i++)
{
char *name = t->File[i]->FileName;
if (t->File[i]->Folder == false)
{
if (EndWith(name, ".crl"))
{
char filename[MAX_PATH];
X_CRL *r;
ConbinePath(filename, sizeof(filename), dirname, name);
r = FileToXCrl(filename);
if (r != NULL)
{
if (IsXRevokedByXCrl(x, r))
{
ret = true;
}
FreeXCrl(r);
}
}
}
}
FreeDir(t);
return ret;
}
// 証明書が CRL によって無効化されているかどうか確認する
bool IsXRevokedByXCrl(X *x, X_CRL *r)
{
// 手抜きさん
return false;
}
// CRL の解放
void FreeXCrl(X_CRL *r)
{
// 引数チェック
if (r == NULL)
{
return;
}
X509_CRL_free(r->Crl);
Free(r);
}
// ファイルを CRL に変換
X_CRL *FileToXCrl(char *filename)
{
wchar_t *filename_w = CopyStrToUni(filename);
X_CRL *ret = FileToXCrlW(filename_w);
Free(filename_w);
return ret;
}
X_CRL *FileToXCrlW(wchar_t *filename)
{
BUF *b;
X_CRL *r;
// 引数チェック
if (filename == NULL)
{
return NULL;
}
b = ReadDumpW(filename);
if (b == NULL)
{
return NULL;
}
r = BufToXCrl(b);
FreeBuf(b);
return r;
}
// バッファを CRL に変換
X_CRL *BufToXCrl(BUF *b)
{
X_CRL *r;
X509_CRL *x509crl;
BIO *bio;
// 引数チェック
if (b == NULL)
{
return NULL;
}
bio = BufToBio(b);
if (bio == NULL)
{
return NULL;
}
x509crl = NULL;
if (d2i_X509_CRL_bio(bio, &x509crl) == NULL || x509crl == NULL)
{
FreeBio(bio);
return NULL;
}
r = ZeroMalloc(sizeof(X_CRL));
r->Crl = x509crl;
FreeBio(bio);
return r;
}
// Copied from t1_enc.c of OpenSSL
void Enc_tls1_P_hash(const EVP_MD *md, const unsigned char *sec, int sec_len,
const unsigned char *seed, int seed_len, unsigned char *out, int olen)
{
int chunk,n;
unsigned int j;
HMAC_CTX *ctx;
HMAC_CTX *ctx_tmp;
unsigned char A1[EVP_MAX_MD_SIZE];
unsigned int A1_len;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
ctx = HMAC_CTX_new();
ctx_tmp = HMAC_CTX_new();
#else
HMAC_CTX ctx_;
HMAC_CTX ctx_tmp_;
ctx = &ctx_;
ctx_tmp = &ctx_tmp_;
Zero(ctx, sizeof(HMAC_CTX));
Zero(ctx_tmp, sizeof(HMAC_CTX));
#endif
chunk=EVP_MD_size(md);
HMAC_Init_ex(ctx,sec,sec_len,md, NULL);
HMAC_Init_ex(ctx_tmp,sec,sec_len,md, NULL);
HMAC_Update(ctx,seed,seed_len);
HMAC_Final(ctx,A1,&A1_len);
n=0;
for (;;)
{
HMAC_Init_ex(ctx,NULL,0,NULL,NULL); /* re-init */
HMAC_Init_ex(ctx_tmp,NULL,0,NULL,NULL); /* re-init */
HMAC_Update(ctx,A1,A1_len);
HMAC_Update(ctx_tmp,A1,A1_len);
HMAC_Update(ctx,seed,seed_len);
if (olen > chunk)
{
HMAC_Final(ctx,out,&j);
out+=j;
olen-=j;
HMAC_Final(ctx_tmp,A1,&A1_len); /* calc the next A1 value */
}
else /* last one */
{
HMAC_Final(ctx,A1,&A1_len);
memcpy(out,A1,olen);
break;
}
}
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
HMAC_CTX_free(ctx);
HMAC_CTX_free(ctx_tmp);
#else
HMAC_CTX_cleanup(ctx);
HMAC_CTX_cleanup(ctx_tmp);
#endif
Zero (A1, sizeof(A1));
}
void Enc_tls1_PRF(unsigned char *label, int label_len, const unsigned char *sec,
int slen, unsigned char *out1, int olen)
{
const EVP_MD *md5 = EVP_md5();
const EVP_MD *sha1 = EVP_sha1();
int len,i;
const unsigned char *S1,*S2;
unsigned char *out2;
out2 = (unsigned char *) Malloc (olen);
len=slen/2;
S1=sec;
S2= &(sec[len]);
len+=(slen&1); /* add for odd, make longer */
Enc_tls1_P_hash(md5 ,S1,len,label,label_len,out1,olen);
Enc_tls1_P_hash(sha1,S2,len,label,label_len,out2,olen);
for (i=0; i<olen; i++)
out1[i]^=out2[i];
memset (out2, 0, olen);
Free(out2);
}
// Easy encryption
BUF *EasyEncrypt(BUF *src_buf)
{
UCHAR key[SHA1_SIZE];
BUF *tmp_data;
CRYPT *rc4;
BUF *ret;
// Validate arguments
if (src_buf == NULL)
{
return NULL;
}
Rand(key, SHA1_SIZE);
tmp_data = CloneBuf(src_buf);
rc4 = NewCrypt(key, SHA1_SIZE);
Encrypt(rc4, tmp_data->Buf, tmp_data->Buf, tmp_data->Size);
ret = NewBuf();
WriteBuf(ret, key, SHA1_SIZE);
WriteBufBuf(ret, tmp_data);
FreeCrypt(rc4);
FreeBuf(tmp_data);
SeekBufToBegin(ret);
return ret;
}
// Easy decryption
BUF *EasyDecrypt(BUF *src_buf)
{
UCHAR key[SHA1_SIZE];
BUF *tmp_buf;
CRYPT *rc4;
// Validate arguments
if (src_buf == NULL)
{
return NULL;
}
SeekBufToBegin(src_buf);
if (ReadBuf(src_buf, key, SHA1_SIZE) != SHA1_SIZE)
{
return NULL;
}
tmp_buf = ReadRemainBuf(src_buf);
if (tmp_buf == NULL)
{
return NULL;
}
rc4 = NewCrypt(key, SHA1_SIZE);
Encrypt(rc4, tmp_buf->Buf, tmp_buf->Buf, tmp_buf->Size);
FreeCrypt(rc4);
SeekBufToBegin(tmp_buf);
return tmp_buf;
}
// Calculation of HMAC (MD5)
void HMacMd5(void *dst, void *key, UINT key_size, void *data, UINT data_size)
{
UCHAR k[HMAC_BLOCK_SIZE];
UCHAR hash1[MD5_SIZE];
UCHAR data2[HMAC_BLOCK_SIZE];
MD5_CTX md5_ctx1;
UCHAR pad1[HMAC_BLOCK_SIZE];
UINT i;
// Validate arguments
if (dst == NULL || (key == NULL && key_size != 0) || (data == NULL && data_size != 0))
{
return;
}
// Creating a K
if (key_size <= HMAC_BLOCK_SIZE)
{
for (i = 0;i < key_size;i++)
{
pad1[i] = ((UCHAR *)key)[i] ^ 0x36;
}
for (i = key_size;i < HMAC_BLOCK_SIZE;i++)
{
pad1[i] = 0 ^ 0x36;
}
}
else
{
Zero(k, sizeof(k));
Hash(k, key, key_size, false);
for (i = 0;i < HMAC_BLOCK_SIZE;i++)
{
pad1[i] = k[i] ^ 0x36;
}
}
MD5_Init(&md5_ctx1);
MD5_Update(&md5_ctx1, pad1, sizeof(pad1));
MD5_Update(&md5_ctx1, data, data_size);
MD5_Final(hash1, &md5_ctx1);
// Generation of data 2
if (key_size <= HMAC_BLOCK_SIZE)
{
for (i = 0;i < key_size;i++)
{
data2[i] = ((UCHAR *)key)[i] ^ 0x5c;
}
for (i = key_size;i < HMAC_BLOCK_SIZE;i++)
{
data2[i] = 0 ^ 0x5c;
}
}
else
{
for (i = 0;i < HMAC_BLOCK_SIZE;i++)
{
data2[i] = k[i] ^ 0x5c;
}
}
MD5_Init(&md5_ctx1);
MD5_Update(&md5_ctx1, data2, HMAC_BLOCK_SIZE);
MD5_Update(&md5_ctx1, hash1, MD5_SIZE);
MD5_Final(dst, &md5_ctx1);
}
// Calculation of HMAC (SHA-1)
void HMacSha1(void *dst, void *key, UINT key_size, void *data, UINT data_size)
{
UCHAR k[HMAC_BLOCK_SIZE];
UCHAR hash1[SHA1_SIZE];
UCHAR data2[HMAC_BLOCK_SIZE];
SHA_CTX sha_ctx1;
UCHAR pad1[HMAC_BLOCK_SIZE];
UINT i;
// Validate arguments
if (dst == NULL || (key == NULL && key_size != 0) || (data == NULL && data_size != 0))
{
return;
}
// Creating a K
if (key_size <= HMAC_BLOCK_SIZE)
{
for (i = 0;i < key_size;i++)
{
pad1[i] = ((UCHAR *)key)[i] ^ 0x36;
}
for (i = key_size;i < HMAC_BLOCK_SIZE;i++)
{
pad1[i] = 0 ^ 0x36;
}
}
else
{
Zero(k, sizeof(k));
HashSha1(k, key, key_size);
for (i = 0;i < HMAC_BLOCK_SIZE;i++)
{
pad1[i] = k[i] ^ 0x36;
}
}
SHA1_Init(&sha_ctx1);
SHA1_Update(&sha_ctx1, pad1, sizeof(pad1));
SHA1_Update(&sha_ctx1, data, data_size);
SHA1_Final(hash1, &sha_ctx1);
// Generation of data 2
if (key_size <= HMAC_BLOCK_SIZE)
{
for (i = 0;i < key_size;i++)
{
data2[i] = ((UCHAR *)key)[i] ^ 0x5c;
}
for (i = key_size;i < HMAC_BLOCK_SIZE;i++)
{
data2[i] = 0 ^ 0x5c;
}
}
else
{
for (i = 0;i < HMAC_BLOCK_SIZE;i++)
{
data2[i] = k[i] ^ 0x5c;
}
}
SHA1_Init(&sha_ctx1);
SHA1_Update(&sha_ctx1, data2, HMAC_BLOCK_SIZE);
SHA1_Update(&sha_ctx1, hash1, SHA1_SIZE);
SHA1_Final(dst, &sha_ctx1);
}
// Calculate the HMAC
void MdProcess(MD *md, void *dest, void *src, UINT size)
{
int r;
// Validate arguments
if (md == NULL || dest == NULL || (src != NULL && size == 0))
{
return;
}
HMAC_Init_ex(md->Ctx, NULL, 0, NULL, NULL);
HMAC_Update(md->Ctx, src, size);
r = 0;
HMAC_Final(md->Ctx, dest, &r);
}
// Set the key to the message digest object
void SetMdKey(MD *md, void *key, UINT key_size)
{
// Validate arguments
if (md == NULL || (key != NULL && key_size == 0))
{
return;
}
HMAC_Init_ex(md->Ctx, key, key_size, (const EVP_MD *)md->Md, NULL);
}
// Creating a message digest object
MD *NewMd(char *name)
{
MD *m;
// Validate arguments
if (name == NULL)
{
return NULL;
}
m = ZeroMalloc(sizeof(MD));
StrCpy(m->Name, sizeof(m->Name), name);
m->Md = (const struct evp_md_st *)EVP_get_digestbyname(name);
if (m->Md == NULL)
{
FreeMd(m);
return NULL;
}
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
m->Ctx = HMAC_CTX_new();
#else
m->Ctx = ZeroMalloc(sizeof(struct hmac_ctx_st));
HMAC_CTX_init(m->Ctx);
#endif
m->Size = EVP_MD_size((const EVP_MD *)m->Md);
return m;
}
// Release of the message digest object
void FreeMd(MD *md)
{
// Validate arguments
if (md == NULL)
{
return;
}
if (md->Ctx != NULL)
{
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
HMAC_CTX_free(md->Ctx);
#else
HMAC_CTX_cleanup(md->Ctx);
Free(md->Ctx);
#endif
}
Free(md);
}
// Creating a cipher object
CIPHER *NewCipher(char *name)
{
CIPHER *c;
// Validate arguments
if (name == NULL)
{
return NULL;
}
c = ZeroMalloc(sizeof(CIPHER));
StrCpy(c->Name, sizeof(c->Name), name);
if (StrCmpi(name, "[null-cipher]") == 0 ||
StrCmpi(name, "NULL") == 0 ||
IsEmptyStr(name))
{
c->IsNullCipher = true;
return c;
}
c->Cipher = EVP_get_cipherbyname(c->Name);
if (c->Cipher == NULL)
{
FreeCipher(c);
return NULL;
}
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
c->Ctx = EVP_CIPHER_CTX_new();
#else
c->Ctx = ZeroMalloc(sizeof(struct evp_cipher_ctx_st));
EVP_CIPHER_CTX_init(c->Ctx);
#endif
c->IsAeadCipher = (EVP_CIPHER_flags(c->Cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) != 0;
c->BlockSize = EVP_CIPHER_block_size(c->Cipher);
c->KeySize = EVP_CIPHER_key_length(c->Cipher);
c->IvSize = EVP_CIPHER_iv_length(c->Cipher);
return c;
}
// Set the key to the cipher object
void SetCipherKey(CIPHER *c, void *key, bool enc)
{
// Validate arguments
if (c == NULL || key == NULL)
{
return;
}
if (c->IsNullCipher == false)
{
if (c->Ctx != NULL)
{
EVP_CipherInit(c->Ctx, c->Cipher, key, NULL, enc);
}
}
c->Encrypt = enc;
}
// Process encryption / decryption
UINT CipherProcess(CIPHER *c, void *iv, void *dest, void *src, UINT size)
{
int r = size;
int r2 = 0;
if (c != NULL && c->IsNullCipher)
{
if (dest != src)
{
Copy(dest, src, size);
}
return size;
}
// Validate arguments
if (c == NULL || iv == NULL || dest == NULL || src == NULL || size == 0)
{
return 0;
}
if (EVP_CipherInit(c->Ctx, NULL, NULL, iv, c->Encrypt) == 0)
{
return 0;
}
if (EVP_CipherUpdate(c->Ctx, dest, &r, src, size) == 0)
{
return 0;
}
if (EVP_CipherFinal(c->Ctx, ((UCHAR *)dest) + (UINT)r, &r2) == 0)
{
return 0;
}
return r + r2;
}
// Process encryption / decryption (AEAD)
UINT CipherProcessAead(CIPHER *c, void *iv, void *tag, UINT tag_size, void *dest, void *src, UINT src_size, void *aad, UINT aad_size)
{
int r = src_size;
int r2 = 0;
// Validate arguments
if (c == NULL)
{
return 0;
}
else if (c->IsNullCipher)
{
Copy(dest, src, src_size);
return src_size;
}
else if (c->IsAeadCipher == false || iv == NULL || tag == NULL || tag_size == 0 || dest == NULL || src == NULL || src_size == 0)
{
return 0;
}
if (EVP_CipherInit_ex(c->Ctx, NULL, NULL, NULL, iv, c->Encrypt) == false)
{
Debug("CipherProcessAead(): EVP_CipherInit_ex() failed with error: %s\n", ERR_error_string(ERR_get_error(),NULL));
return 0;
}
if (c->Encrypt == false)
{
if (EVP_CIPHER_CTX_ctrl(c->Ctx, EVP_CTRL_AEAD_SET_TAG, tag_size, tag) == false)
{
Debug("CipherProcessAead(): EVP_CIPHER_CTX_ctrl() failed to set the tag!\n");
return 0;
}
}
if (aad != NULL && aad_size != 0)
{
if (EVP_CipherUpdate(c->Ctx, NULL, &r, aad, aad_size) == false)
{
Debug("CipherProcessAead(): EVP_CipherUpdate() failed with error: %s\n", ERR_error_string(ERR_get_error(),NULL));
return 0;
}
}
if (EVP_CipherUpdate(c->Ctx, dest, &r, src, src_size) == false)
{
Debug("CipherProcessAead(): EVP_CipherUpdate() failed with error: %s\n", ERR_error_string(ERR_get_error(),NULL));
return 0;
}
if (EVP_CipherFinal_ex(c->Ctx, ((UCHAR *)dest) + (UINT)r, &r2) == false)
{
Debug("CipherProcessAead(): EVP_CipherFinal_ex() failed with error: %s\n", ERR_error_string(ERR_get_error(),NULL));
return 0;
}
if (c->Encrypt)
{
if (EVP_CIPHER_CTX_ctrl(c->Ctx, EVP_CTRL_AEAD_GET_TAG, tag_size, tag) == false)
{
Debug("CipherProcessAead(): EVP_CIPHER_CTX_ctrl() failed to get the tag!\n");
return 0;
}
}
return r + r2;
}
// Release of the cipher object
void FreeCipher(CIPHER *c)
{
// Validate arguments
if (c == NULL)
{
return;
}
if (c->Ctx != NULL)
{
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX_free(c->Ctx);
#else
EVP_CIPHER_CTX_cleanup(c->Ctx);
Free(c->Ctx);
#endif
}
Free(c);
}
// Convert the buffer to the public key
K *RsaBinToPublic(void *data, UINT size)
{
RSA *rsa;
K *k;
BIO *bio;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
BIGNUM *e, *n;
#endif
// Validate arguments
if (data == NULL || size < 4)
{
return NULL;
}
rsa = RSA_new();
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
e = BN_new();
BN_set_word(e, RSA_F4);
n = BinToBigNum(data, size);
RSA_set0_key(rsa, n, e, NULL);
#else
if (rsa->e != NULL)
{
BN_free(rsa->e);
}
rsa->e = BN_new();
BN_set_word(rsa->e, RSA_F4);
if (rsa->n != NULL)
{
BN_free(rsa->n);
}
rsa->n = BinToBigNum(data, size);
#endif
bio = NewBio();
LockOpenSSL();
{
i2d_RSA_PUBKEY_bio(bio, rsa);
}
UnlockOpenSSL();
BIO_seek(bio, 0);
k = BioToK(bio, false, false, NULL);
FreeBio(bio);
RSA_free(rsa);
return k;
}
// Convert the public key to a buffer
BUF *RsaPublicToBuf(K *k)
{
BUF *b;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
RSA *rsa;
const BIGNUM *n;
#endif
// Validate arguments
if (k == NULL || k->pkey == NULL)
{
return NULL;
}
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
rsa = (RSA*)EVP_PKEY_get0_RSA(k->pkey);
if (rsa == NULL)
{
return NULL;
}
RSA_get0_key(rsa, &n, NULL, NULL);
if (n == NULL)
{
return NULL;
}
b = BigNumToBuf(n);
#else
if (k->pkey->pkey.rsa == NULL || k->pkey->pkey.rsa->n == NULL)
{
return NULL;
}
b = BigNumToBuf(k->pkey->pkey.rsa->n);
#endif
if (b == NULL)
{
return NULL;
}
return b;
}
// Convert the public key to a binary
void RsaPublicToBin(K *k, void *data)
{
BUF *b;
// Validate arguments
if (data == NULL)
{
return;
}
b = RsaPublicToBuf(k);
if (b == NULL)
{
return;
}
Copy(data, b->Buf, b->Size);
FreeBuf(b);
}
// Get public key size
UINT RsaPublicSize(K *k)
{
BUF *b;
UINT ret;
b = RsaPublicToBuf(k);
if (b == NULL)
{
return 0;
}
ret = b->Size;
FreeBuf(b);
return ret;
}
// Stupid test
void CertTest2()
{
}
// Yagi test
void CertTest()
{
}
// Test function related to certificate
void CertTest_()
{
}
// Hash a pointer to a 32-bit
UINT HashPtrToUINT(void *p)
{
UCHAR hash_data[SHA256_SIZE];
UCHAR hash_src[CANARY_RAND_SIZE + sizeof(void *)];
UINT ret;
// Validate arguments
if (p == NULL)
{
return 0;
}
Zero(hash_src, sizeof(hash_src));
Copy(hash_src + 0, GetCanaryRand(CANARY_RAND_ID_PTR_KEY_HASH), CANARY_RAND_SIZE);
Copy(hash_src + CANARY_RAND_SIZE, p, sizeof(void *));
HashSha256(hash_data, hash_src, sizeof(hash_src));
Copy(&ret, hash_data, sizeof(ret));
return ret;
}
// Copy of the NAME
NAME *CopyName(NAME *n)
{
// Validate arguments
if (n == NULL)
{
return NULL;
}
return NewName(n->CommonName, n->Organization, n->Unit,
n->Country, n->State, n->Local);
}
// Convert a BIGNUM to a string
char *BigNumToStr(BIGNUM *bn)
{
BIO *bio;
BUF *b;
char *ret;
// Validate arguments
if (bn == NULL)
{
return NULL;
}
bio = NewBio();
BN_print(bio, bn);
b = BioToBuf(bio);
FreeBio(bio);
ret = ZeroMalloc(b->Size + 1);
Copy(ret, b->Buf, b->Size);
FreeBuf(b);
return ret;
}
// Convert the binary to the BIGNUM
BIGNUM *BinToBigNum(void *data, UINT size)
{
BIGNUM *bn;
// Validate arguments
if (data == NULL)
{
return NULL;
}
bn = BN_new();
BN_bin2bn(data, size, bn);
return bn;
}
// Convert the buffer to a BIGNUM
BIGNUM *BufToBigNum(BUF *b)
{
if (b == NULL)
{
return NULL;
}
return BinToBigNum(b->Buf, b->Size);
}
// Convert a BIGNUM to a buffer
BUF *BigNumToBuf(const BIGNUM *bn)
{
UINT size;
UCHAR *tmp;
BUF *b;
// Validate arguments
if (bn == NULL)
{
return NULL;
}
size = BN_num_bytes(bn);
tmp = ZeroMalloc(size);
BN_bn2bin(bn, tmp);
b = NewBuf();
WriteBuf(b, tmp, size);
Free(tmp);
SeekBuf(b, 0, 0);
return b;
}
// Initialization of the lock of OpenSSL
void OpenSSL_InitLock()
{
UINT i;
// Initialization of the lock object
ssl_lock_num = CRYPTO_num_locks();
ssl_lock_obj = Malloc(sizeof(LOCK *) * ssl_lock_num);
for (i = 0;i < ssl_lock_num;i++)
{
ssl_lock_obj[i] = NewLock();
}
// Setting the lock function
CRYPTO_set_locking_callback(OpenSSL_Lock);
CRYPTO_set_id_callback(OpenSSL_Id);
}
// Release of the lock of OpenSSL
void OpenSSL_FreeLock()
{
UINT i;
for (i = 0;i < ssl_lock_num;i++)
{
DeleteLock(ssl_lock_obj[i]);
}
Free(ssl_lock_obj);
ssl_lock_obj = NULL;
CRYPTO_set_locking_callback(NULL);
CRYPTO_set_id_callback(NULL);
}
// Lock function for OpenSSL
void OpenSSL_Lock(int mode, int n, const char *file, int line)
{
LOCK *lock = ssl_lock_obj[n];
if (mode & CRYPTO_LOCK)
{
// Lock
Lock(lock);
}
else
{
// Unlock
Unlock(lock);
}
}
// Return the thread ID
unsigned long OpenSSL_Id(void)
{
return (unsigned long)ThreadId();
}
// Get the display name of the certificate
void GetPrintNameFromX(wchar_t *str, UINT size, X *x)
{
// Validate arguments
if (x == NULL || str == NULL)
{
return;
}
GetPrintNameFromName(str, size, x->subject_name);
}
void GetPrintNameFromXA(char *str, UINT size, X *x)
{
wchar_t tmp[MAX_SIZE];
// Validate arguments
if (str == NULL || x == NULL)
{
return;
}
GetPrintNameFromX(tmp, sizeof(tmp), x);
UniToStr(str, size, tmp);
}
void GetAllNameFromXEx(wchar_t *str, UINT size, X *x)
{
// Validate arguments
if (x == NULL || str == NULL)
{
return;
}
GetAllNameFromNameEx(str, size, x->subject_name);
}
void GetAllNameFromXExA(char *str, UINT size, X *x)
{
wchar_t tmp[MAX_SIZE];
// Validate arguments
if (str == NULL || x == NULL)
{
return;
}
GetAllNameFromXEx(tmp, sizeof(tmp), x);
UniToStr(str, size, tmp);
}
// Get the display name from NAME
void GetPrintNameFromName(wchar_t *str, UINT size, NAME *name)
{
// Validate arguments
if (str == NULL || name == NULL)
{
return;
}
if (name->CommonName != NULL)
{
UniStrCpy(str, size, name->CommonName);
}
else if (name->Organization != NULL)
{
UniStrCpy(str, size, name->Organization);
}
else if (name->Unit != NULL)
{
UniStrCpy(str, size, name->Unit);
}
else if (name->State != NULL)
{
UniStrCpy(str, size, name->State);
}
else if (name->Local != NULL)
{
UniStrCpy(str, size, name->Local);
}
else if (name->Country != NULL)
{
UniStrCpy(str, size, name->Country);
}
else
{
UniStrCpy(str, size, L"untitled");
}
}
// Get all the name strings from the certificate
void GetAllNameFromX(wchar_t *str, UINT size, X *x)
{
UCHAR md5[MD5_SIZE], sha1[SHA1_SIZE];
char tmp1[MD5_SIZE * 3 + 8], tmp2[SHA1_SIZE * 3 + 8];
wchar_t tmp3[sizeof(tmp1) + sizeof(tmp2) + 64];
// Validate arguments
if (str == NULL || x == NULL)
{
return;
}
GetAllNameFromName(str, size, x->subject_name);
if (x->serial != NULL && x->serial->size >= 1)
{
char tmp[128];
wchar_t tmp2[128];
BinToStr(tmp, sizeof(tmp), x->serial->data, x->serial->size);
UniFormat(tmp2, sizeof(tmp2), L", SERIAL=\"%S\"", tmp);
UniStrCat(str, size, tmp2);
}
// Digest value
GetXDigest(x, md5, false);
GetXDigest(x, sha1, true);
BinToStr(tmp1, sizeof(tmp1), md5, MD5_SIZE);
BinToStr(tmp2, sizeof(tmp2), sha1, SHA1_SIZE);
UniFormat(tmp3, sizeof(tmp3), L" (Digest: MD5=\"%S\", SHA1=\"%S\")", tmp1, tmp2);
UniStrCat(str, size, tmp3);
}
void GetAllNameFromA(char *str, UINT size, X *x)
{
wchar_t tmp[MAX_SIZE];
// Validate arguments
if (str == NULL || x == NULL)
{
return;
}
GetAllNameFromX(tmp, sizeof(tmp), x);
UniToStr(str, size, tmp);
}
// Get the all name strings from NAME
void GetAllNameFromName(wchar_t *str, UINT size, NAME *name)
{
UniStrCpy(str, size, L"");
// Validate arguments
if (str == NULL || name == NULL)
{
return;
}
if (name->CommonName != NULL)
{
UniFormat(str, size, L"%sCN=%s, ", str, name->CommonName);
}
if (name->Organization != NULL)
{
UniFormat(str, size, L"%sO=%s, ", str, name->Organization);
}
if (name->Unit != NULL)
{
UniFormat(str, size, L"%sOU=%s, ", str, name->Unit);
}
if (name->State != NULL)
{
UniFormat(str, size, L"%sS=%s, ", str, name->State);
}
if (name->Local != NULL)
{
UniFormat(str, size, L"%sL=%s, ", str, name->Local);
}
if (name->Country != NULL)
{
UniFormat(str, size, L"%sC=%s, ", str, name->Country);
}
if (UniStrLen(str) >= 3)
{
UINT len = UniStrLen(str);
if (str[len - 2] == L',' &&
str[len - 1] == L' ')
{
str[len - 2] = 0;
}
}
}
void GetAllNameFromNameEx(wchar_t *str, UINT size, NAME *name)
{
// Validate arguments
if (str == NULL || name == NULL)
{
return;
}
UniStrCpy(str, size, L"");
if (name->CommonName != NULL)
{
UniFormat(str, size, L"%s%s, ", str, name->CommonName);
}
if (name->Organization != NULL)
{
UniFormat(str, size, L"%s%s, ", str, name->Organization);
}
if (name->Unit != NULL)
{
UniFormat(str, size, L"%s%s, ", str, name->Unit);
}
if (name->State != NULL)
{
UniFormat(str, size, L"%s%s, ", str, name->State);
}
if (name->Local != NULL)
{
UniFormat(str, size, L"%s%s, ", str, name->Local);
}
if (name->Country != NULL)
{
UniFormat(str, size, L"%s%s, ", str, name->Country);
}
if (UniStrLen(str) >= 3)
{
UINT len = UniStrLen(str);
if (str[len - 2] == L',' &&
str[len - 1] == L' ')
{
str[len - 2] = 0;
}
}
}
K* CloneKFast(K* k)
{
K* ret;
// Validate arguments
if (k == NULL)
{
return NULL;
}
ret = ZeroMalloc(sizeof(K));
ret->private_key = k->private_key;
ret->pkey = k->pkey;
if (ret->pkey != NULL)
{
EVP_PKEY_up_ref(ret->pkey);
}
return ret;
}
// Clone of the key
K *CloneK(K *k)
{
BUF *b;
K *ret;
// Validate arguments
if (k == NULL)
{
return NULL;
}
b = KToBuf(k, false, NULL);
if (b == NULL)
{
return NULL;
}
ret = BufToK(b, k->private_key, false, NULL);
FreeBuf(b);
return ret;
}
X* CloneXFast(X* x)
{
X* ret;
// Validate arguments
if (x == NULL)
{
return NULL;
}
ret = ZeroMalloc(sizeof(X));
ret->issuer_name = CopyName(x->issuer_name);
ret->subject_name = CopyName(x->subject_name);
ret->root_cert = x->root_cert;
ret->notBefore = x->notBefore;
ret->notAfter = x->notAfter;
ret->serial = CloneXSerial(x->serial);
ret->do_not_free = false;
ret->is_compatible_bit = x->is_compatible_bit;
ret->bits = x->bits;
ret->has_basic_constraints = x->has_basic_constraints;
StrCpy(ret->issuer_url, sizeof(ret->issuer_url), x->issuer_url);
ret->x509 = x->x509;
if (ret->x509 != NULL)
{
X509_up_ref(ret->x509);
}
return ret;
}
// Clone of certificate
X *CloneX(X *x)
{
BUF *b;
X *ret;
// Validate arguments
if (x == NULL)
{
return NULL;
}
b = XToBuf(x, false);
if (b == NULL)
{
return NULL;
}
ret = BufToX(b, false);
FreeBuf(b);
return ret;
}
// Generate a P12
P12 *NewP12(X *x, K *k, char *password)
{
PKCS12 *pkcs12;
P12 *p12;
// Validate arguments
if (x == NULL || k == NULL)
{
return false;
}
if (password && StrLen(password) == 0)
{
password = NULL;
}
LockOpenSSL();
{
pkcs12 = PKCS12_create(password, NULL, k->pkey, x->x509, NULL, 0, 0, 0, 0, 0);
if (pkcs12 == NULL)
{
UnlockOpenSSL();
return NULL;
}
}
UnlockOpenSSL();
p12 = PKCS12ToP12(pkcs12);
return p12;
}
// Check whether the P12 is encrypted
bool IsEncryptedP12(P12 *p12)
{
X *x;
K *k;
// Validate arguments
if (p12 == NULL)
{
return false;
}
if (ParseP12(p12, &x, &k, NULL) == true)
{
FreeX(x);
FreeK(k);
return false;
}
return true;
}
// Extract the X and the K from the P12
bool ParseP12(P12 *p12, X **x, K **k, char *password)
{
EVP_PKEY *pkey;
X509 *x509;
// Validate arguments
if (p12 == NULL || x == NULL || k == NULL)
{
return false;
}
if (password && StrLen(password) == 0)
{
password = NULL;
}
if (password == NULL)
{
password = "";
}
// Password confirmation
LockOpenSSL();
{
if (PKCS12_verify_mac(p12->pkcs12, password, -1) == false &&
PKCS12_verify_mac(p12->pkcs12, NULL, -1) == false)
{
UnlockOpenSSL();
return false;
}
}
UnlockOpenSSL();
// Extraction
LockOpenSSL();
{
if (PKCS12_parse(p12->pkcs12, password, &pkey, &x509, NULL) == false)
{
if (PKCS12_parse(p12->pkcs12, NULL, &pkey, &x509, NULL) == false)
{
UnlockOpenSSL();
return false;
}
}
}
UnlockOpenSSL();
// Conversion
*x = X509ToX(x509);
if (*x == NULL)
{
FreePKey(pkey);
return false;
}
*k = ZeroMalloc(sizeof(K));
(*k)->private_key = true;
(*k)->pkey = pkey;
return true;
}
// Write the P12 to a file
bool P12ToFile(P12 *p12, char *filename)
{
wchar_t *filename_w = CopyStrToUni(filename);
bool ret = P12ToFileW(p12, filename_w);
return ret;
}
bool P12ToFileW(P12 *p12, wchar_t *filename)
{
BUF *b;
// Validate arguments
if (p12 == NULL || filename == NULL)
{
return false;
}
b = P12ToBuf(p12);
if (b == NULL)
{
return false;
}
if (DumpBufW(b, filename) == false)
{
FreeBuf(b);
return false;
}
FreeBuf(b);
return true;
}
// Read a P12 from the file
P12 *FileToP12(char *filename)
{
wchar_t *filename_w = CopyStrToUni(filename);
P12 *ret = FileToP12W(filename_w);
Free(filename_w);
return ret;
}
P12 *FileToP12W(wchar_t *filename)
{
BUF *b;
P12 *p12;
// Validate arguments
if (filename == NULL)
{
return NULL;
}
b = ReadDumpW(filename);
if (b == NULL)
{
return NULL;
}
p12 = BufToP12(b);
FreeBuf(b);
return p12;
}
// Release of P12
void FreeP12(P12 *p12)
{
// Validate arguments
if (p12 == NULL)
{
return;
}
FreePKCS12(p12->pkcs12);
Free(p12);
}
// Release of PKCS12
void FreePKCS12(PKCS12 *pkcs12)
{
// Validate arguments
if (pkcs12 == NULL)
{
return;
}
PKCS12_free(pkcs12);
}
// Converted the P12 to a BUF
BUF *P12ToBuf(P12 *p12)
{
BIO *bio;
BUF *buf;
// Validate arguments
if (p12 == NULL)
{
return NULL;
}
bio = P12ToBio(p12);
if (bio == NULL)
{
return NULL;
}
buf = BioToBuf(bio);
FreeBio(bio);
SeekBuf(buf, 0, 0);
return buf;
}
// Converted the P12 to a BIO
BIO *P12ToBio(P12 *p12)
{
BIO *bio;
// Validate arguments
if (p12 == NULL)
{
return NULL;
}
bio = NewBio();
LockOpenSSL();
{
i2d_PKCS12_bio(bio, p12->pkcs12);
}
UnlockOpenSSL();
return bio;
}
// Read the P12 from the BUF
P12 *BufToP12(BUF *b)
{
P12 *p12;
BIO *bio;
// Validate arguments
if (b == NULL)
{
return NULL;
}
bio = BufToBio(b);
if (bio == NULL)
{
return NULL;
}
p12 = BioToP12(bio);
FreeBio(bio);
return p12;
}
// Read the P12 from the BIO
P12 *BioToP12(BIO *bio)
{
PKCS12 *pkcs12;
// Validate arguments
if (bio == NULL)
{
return NULL;
}
// Conversion
LockOpenSSL();
{
pkcs12 = d2i_PKCS12_bio(bio, NULL);
}
UnlockOpenSSL();
if (pkcs12 == NULL)
{
// Failure
return NULL;
}
return PKCS12ToP12(pkcs12);
}
// Generate a P12 from a PKCS12
P12 *PKCS12ToP12(PKCS12 *pkcs12)
{
P12 *p12;
// Validate arguments
if (pkcs12 == NULL)
{
return NULL;
}
p12 = ZeroMalloc(sizeof(P12));
p12->pkcs12 = pkcs12;
return p12;
}
// Convert a binary to a string
char *ByteToStr(BYTE *src, UINT src_size)
{
UINT size;
char *dst;
UINT i;
// Validate arguments
if (src == NULL)
{
return NULL;
}
size = MAX(src_size * 3, 1);
dst = Malloc(size);
dst[size - 1] = 0;
for (i = 0;i < src_size;i++)
{
char tmp[3];
Format(tmp, sizeof(tmp), "%02x", src[i]);
dst[i * 3 + 0] = tmp[0];
dst[i * 3 + 1] = tmp[1];
dst[i * 3 + 2] = ((i == (src_size - 1) ? 0 : ' '));
}
return dst;
}
// Release of X_SERIAL
void FreeXSerial(X_SERIAL *serial)
{
// Validate arguments
if (serial == NULL)
{
return;
}
Free(serial->data);
Free(serial);
}
// Comparison of X_SERIAL
bool CompareXSerial(X_SERIAL *s1, X_SERIAL *s2)
{
// Validate arguments
if (s1 == NULL || s2 == NULL)
{
return false;
}
if (s1->size != s2->size)
{
return false;
}
if (Cmp(s1->data, s2->data, s1->size) != 0)
{
return false;
}
return true;
}
// Copy of X_SERIAL
X_SERIAL *CloneXSerial(X_SERIAL *src)
{
X_SERIAL *s;
// Validate arguments
if (src == NULL)
{
return NULL;
}
s = ZeroMalloc(sizeof(X_SERIAL));
s->data = ZeroMalloc(src->size);
Copy(s->data, src->data, src->size);
s->size = src->size;
return s;
}
// Initialization of X_SERIAL
X_SERIAL *NewXSerial(void *data, UINT size)
{
X_SERIAL *serial;
UCHAR *buf = (UCHAR *)data;
UINT i;
// Validate arguments
if (data == NULL || size == 0)
{
return NULL;
}
for (i = 0;i < size;i++)
{
if (buf[i] != 0)
{
break;
}
}
if (i == size)
{
i = size - 1;
}
buf += i;
serial = Malloc(sizeof(X_SERIAL));
serial->size = size - i;
serial->data = ZeroMalloc(size + 16);
Copy(serial->data, buf, size - i);
return serial;
}
// Get the number of days till January 1, 2038
UINT GetDaysUntil2038()
{
UINT64 now = SystemTime64();
UINT64 target;
SYSTEMTIME st;
Zero(&st, sizeof(st));
st.wYear = 2038;
st.wMonth = 1;
st.wDay = 1;
target = SystemToUINT64(&st);
if (now >= target)
{
return 0;
}
else
{
return (UINT)((target - now) / (UINT64)(1000 * 60 * 60 * 24));
}
}
UINT GetDaysUntil2038Ex()
{
SYSTEMTIME now;
Zero(&now, sizeof(now));
SystemTime(&now);
if (now.wYear >= 2030)
{
UINT64 now = SystemTime64();
UINT64 target;
SYSTEMTIME st;
Zero(&st, sizeof(st));
st.wYear = 2049;
st.wMonth = 12;
st.wDay = 30;
target = SystemToUINT64(&st);
if (now >= target)
{
return 0;
}
else
{
return (UINT)((target - now) / (UINT64)(1000 * 60 * 60 * 24));
}
}
else
{
return GetDaysUntil2038();
}
}
// Issue an X509 certificate
X *NewX(K *pub, K *priv, X *ca, NAME *name, UINT days, X_SERIAL *serial)
{
return NewXEx(pub, priv, ca, name, days, serial, NULL);
}
X *NewXEx(K *pub, K *priv, X *ca, NAME *name, UINT days, X_SERIAL *serial, NAME *name_issuer)
{
X509 *x509;
X *x;
// Validate arguments
if (pub == NULL || priv == NULL || name == NULL || ca == NULL)
{
return NULL;
}
x509 = NewX509Ex(pub, priv, ca, name, days, serial, name_issuer);
if (x509 == NULL)
{
return NULL;
}
x = X509ToX(x509);
if (x == NULL)
{
return NULL;
}
return x;
}
// Create a root certificate
X *NewRootX(K *pub, K *priv, NAME *name, UINT days, X_SERIAL *serial)
{
X509 *x509;
X *x, *x2;
// Validate arguments
if (pub == NULL || priv == NULL || name == NULL)
{
return NULL;
}
x509 = NewRootX509(pub, priv, name, days, serial);
if (x509 == NULL)
{
return NULL;
}
x = X509ToX(x509);
if (x == NULL)
{
return NULL;
}
x2 = CloneX(x);
FreeX(x);
return x2;
}
// Create new X509 basic & extended key usage
void AddKeyUsageX509(EXTENDED_KEY_USAGE *ex, int nid)
{
ASN1_OBJECT *obj;
// Validate arguments
if (ex == NULL)
{
return;
}
obj = OBJ_nid2obj(nid);
if (obj != NULL)
{
sk_ASN1_OBJECT_push(ex, obj);
}
}
X509_EXTENSION *NewExtendedKeyUsageForX509(bool root_cert)
{
EXTENDED_KEY_USAGE *ex = sk_ASN1_OBJECT_new_null();
X509_EXTENSION *ret;
if (root_cert)
{
AddKeyUsageX509(ex, NID_server_auth);
AddKeyUsageX509(ex, NID_client_auth);
AddKeyUsageX509(ex, NID_code_sign);
AddKeyUsageX509(ex, NID_email_protect);
AddKeyUsageX509(ex, NID_ipsecEndSystem);
AddKeyUsageX509(ex, NID_ipsecTunnel);
AddKeyUsageX509(ex, NID_ipsecUser);
AddKeyUsageX509(ex, NID_time_stamp);
AddKeyUsageX509(ex, NID_OCSP_sign);
}
else
{
AddKeyUsageX509(ex, NID_server_auth);
AddKeyUsageX509(ex, NID_client_auth);
AddKeyUsageX509(ex, NID_ipsecEndSystem);
AddKeyUsageX509(ex, NID_ipsecTunnel);
AddKeyUsageX509(ex, NID_ipsecUser);
}
ret = X509V3_EXT_i2d(NID_ext_key_usage, 0, ex);
sk_ASN1_OBJECT_pop_free(ex, ASN1_OBJECT_free);
return ret;
}void BitStringSetBit(ASN1_BIT_STRING *str, int bit)
{
// Validate arguments
if (str == NULL)
{
return;
}
ASN1_BIT_STRING_set_bit(str, bit, 1);
}
X509_EXTENSION *NewBasicKeyUsageForX509(bool root_cert)
{
X509_EXTENSION *ret = NULL;
ASN1_BIT_STRING *str;
str = ASN1_BIT_STRING_new();
if (str != NULL)
{
if (root_cert)
{
BitStringSetBit(str, 0); // KU_DIGITAL_SIGNATURE
BitStringSetBit(str, 1); // KU_NON_REPUDIATION
BitStringSetBit(str, 2); // KU_KEY_ENCIPHERMENT
BitStringSetBit(str, 3); // KU_DATA_ENCIPHERMENT
//BitStringSetBit(str, 4); // KU_KEY_AGREEMENT
BitStringSetBit(str, 5); // KU_KEY_CERT_SIGN
BitStringSetBit(str, 6); // KU_CRL_SIGN
}
else
{
BitStringSetBit(str, 0); // KU_DIGITAL_SIGNATURE
BitStringSetBit(str, 2); // KU_KEY_ENCIPHERMENT
}
ret = X509V3_EXT_i2d(NID_key_usage, 0, str);
ASN1_BIT_STRING_free(str);
}
return ret;
}
// Issue an X509 certificate
X509 *NewX509(K *pub, K *priv, X *ca, NAME *name, UINT days, X_SERIAL *serial)
{
return NewX509Ex(pub, priv, ca, name, days, serial, NULL);
}
X509 *NewX509Ex(K *pub, K *priv, X *ca, NAME *name, UINT days, X_SERIAL *serial, NAME *name_issuer)
{
X509 *x509;
UINT64 notBefore, notAfter;
ASN1_TIME *t1, *t2;
X509_NAME *subject_name, *issuer_name;
X509_EXTENSION *ex = NULL;
X509_EXTENSION *eku = NULL;
X509_EXTENSION *busage = NULL;
ASN1_INTEGER *s;
// Validate arguments
if (pub == NULL || name == NULL || ca == NULL)
{
return NULL;
}
if (pub->private_key != false)
{
return NULL;
}
if (priv->private_key == false)
{
return NULL;
}
notBefore = SystemTime64();
notAfter = notBefore + (UINT64)days * (UINT64)3600 * (UINT64)24 * (UINT64)1000;
// Creating a X509
x509 = X509_new();
if (x509 == NULL)
{
return NULL;
}
// Make it a v3 certificate
X509_set_version(x509, 2L);
// Set the Expiration
t1 = X509_get_notBefore(x509);
t2 = X509_get_notAfter(x509);
if (!UINT64ToAsn1Time(t1, notBefore))
{
FreeX509(x509);
return NULL;
}
if (!UINT64ToAsn1Time(t2, notAfter))
{
FreeX509(x509);
return NULL;
}
// Set the name
subject_name = NameToX509Name(name);
if (subject_name == NULL)
{
FreeX509(x509);
return NULL;
}
if (name_issuer == NULL)
{
issuer_name = X509_get_subject_name(ca->x509);
}
else
{
issuer_name = NameToX509Name(name_issuer);
}
if (issuer_name == NULL)
{
FreeX509Name(subject_name);
FreeX509(x509);
return NULL;
}
X509_set_issuer_name(x509, issuer_name);
X509_set_subject_name(x509, subject_name);
FreeX509Name(subject_name);
if (name_issuer != NULL)
{
FreeX509Name(issuer_name);
}
// Set the Serial Number
s = X509_get_serialNumber(x509);
OPENSSL_free(s->data);
if (serial == NULL)
{
char zero = 0;
s->data = OPENSSL_malloc(sizeof(char));
Copy(s->data, &zero, sizeof(char));
s->length = sizeof(char);
}
else
{
s->data = OPENSSL_malloc(serial->size);
Copy(s->data, serial->data, serial->size);
s->length = serial->size;
}
/*
// Extensions
ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, "critical,CA:TRUE");
X509_add_ext(x509, ex, -1);
X509_EXTENSION_free(ex);
*/
// Basic usage
busage = NewBasicKeyUsageForX509(false);
if (busage != NULL)
{
X509_add_ext(x509, busage, -1);
X509_EXTENSION_free(busage);
}
// EKU
eku = NewExtendedKeyUsageForX509(false);
if (eku != NULL)
{
X509_add_ext(x509, eku, -1);
X509_EXTENSION_free(eku);
}
// Alternative subject name
if (UniIsEmptyStr(name->CommonName) == false)
{
char alt_dns[MAX_PATH];
Format(alt_dns, sizeof(alt_dns), "DNS.1:%S", name->CommonName);
ex = X509V3_EXT_conf_nid(NULL, NULL, NID_subject_alt_name, alt_dns);
X509_add_ext(x509, ex, -1);
X509_EXTENSION_free(ex);
}
LockOpenSSL();
{
// Set the public key
X509_set_pubkey(x509, pub->pkey);
// Signature
// 2014.3.19 set the initial digest algorithm to SHA-256
X509_sign(x509, priv->pkey, EVP_sha256());
}
UnlockOpenSSL();
return x509;
}
// Create an X509 root certificate
X509 *NewRootX509(K *pub, K *priv, NAME *name, UINT days, X_SERIAL *serial)
{
X509 *x509;
UINT64 notBefore, notAfter;
ASN1_TIME *t1, *t2;
X509_NAME *subject_name, *issuer_name;
X509_EXTENSION *ex = NULL;
X509_EXTENSION *eku = NULL;
X509_EXTENSION *busage = NULL;
ASN1_INTEGER *s;
// Validate arguments
if (pub == NULL || name == NULL || priv == NULL)
{
return NULL;
}
if (days == 0)
{
days = 365;
}
if (priv->private_key == false)
{
return NULL;
}
if (pub->private_key != false)
{
return NULL;
}
notBefore = SystemTime64();
notAfter = notBefore + (UINT64)days * (UINT64)3600 * (UINT64)24 * (UINT64)1000;
// Creating a X509
x509 = X509_new();
if (x509 == NULL)
{
return NULL;
}
// Make it a v3 certificate
X509_set_version(x509, 2L);
// Set the Expiration
t1 = X509_get_notBefore(x509);
t2 = X509_get_notAfter(x509);
if (!UINT64ToAsn1Time(t1, notBefore))
{
FreeX509(x509);
return NULL;
}
if (!UINT64ToAsn1Time(t2, notAfter))
{
FreeX509(x509);
return NULL;
}
// Set the name
subject_name = NameToX509Name(name);
if (subject_name == NULL)
{
FreeX509(x509);
return NULL;
}
issuer_name = NameToX509Name(name);
if (issuer_name == NULL)
{
FreeX509Name(subject_name);
FreeX509(x509);
return NULL;
}
X509_set_issuer_name(x509, issuer_name);
X509_set_subject_name(x509, subject_name);
FreeX509Name(subject_name);
FreeX509Name(issuer_name);
// Set a Serial Number
s = X509_get_serialNumber(x509);
OPENSSL_free(s->data);
if (serial == NULL)
{
char zero = 0;
s->data = OPENSSL_malloc(sizeof(char));
Copy(s->data, &zero, sizeof(char));
s->length = sizeof(char);
}
else
{
s->data = OPENSSL_malloc(serial->size);
Copy(s->data, serial->data, serial->size);
s->length = serial->size;
}
// Extensions
ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, "critical,CA:TRUE");
X509_add_ext(x509, ex, -1);
X509_EXTENSION_free(ex);
// Basic usage
busage = NewBasicKeyUsageForX509(true);
if (busage != NULL)
{
X509_add_ext(x509, busage, -1);
X509_EXTENSION_free(busage);
}
// EKU
eku = NewExtendedKeyUsageForX509(true);
if (eku != NULL)
{
X509_add_ext(x509, eku, -1);
X509_EXTENSION_free(eku);
}
LockOpenSSL();
{
// Set the public key
X509_set_pubkey(x509, pub->pkey);
// Signature
// 2014.3.19 set the initial digest algorithm to SHA-256
X509_sign(x509, priv->pkey, EVP_sha256());
}
UnlockOpenSSL();
return x509;
}
// Convert the NAMEto a X509_NAME
void *NameToX509Name(NAME *nm)
{
X509_NAME *xn;
// Validate arguments
if (nm == NULL)
{
return NULL;
}
xn = X509_NAME_new();
if (xn == NULL)
{
return NULL;
}
// Add the entries
AddX509Name(xn, NID_commonName, nm->CommonName);
AddX509Name(xn, NID_organizationName, nm->Organization);
AddX509Name(xn, NID_organizationalUnitName, nm->Unit);
AddX509Name(xn, NID_countryName, nm->Country);
AddX509Name(xn, NID_stateOrProvinceName, nm->State);
AddX509Name(xn, NID_localityName, nm->Local);
return xn;
}
// Add an entry to the X509_NAME
bool AddX509Name(void *xn, int nid, wchar_t *str)
{
X509_NAME *x509_name;
UINT utf8_size;
BYTE *utf8;
int encoding_type = MBSTRING_ASC;
// Validate arguments
if (xn == NULL || str == NULL)
{
return false;
}
// Convert to UTF-8
utf8_size = CalcUniToUtf8(str);
if (utf8_size == 0)
{
return false;
}
utf8 = ZeroMalloc(utf8_size + 1);
UniToUtf8(utf8, utf8_size, str);
utf8[utf8_size] = 0;
if (StrLen(utf8) != UniStrLen(str))
{
encoding_type = MBSTRING_UTF8;
}
// Adding
x509_name = (X509_NAME *)xn;
LockOpenSSL();
{
X509_NAME_add_entry_by_NID(x509_name, nid, encoding_type, utf8, utf8_size, -1, 0);
}
UnlockOpenSSL();
Free(utf8);
return true;
}
// Release the X509_NAME
void FreeX509Name(void *xn)
{
X509_NAME *x509_name;
// Validate arguments
if (xn == NULL)
{
return;
}
x509_name = (X509_NAME *)xn;
X509_NAME_free(x509_name);
}
// Creating the NAME
NAME *NewName(wchar_t *common_name, wchar_t *organization, wchar_t *unit,
wchar_t *country, wchar_t *state, wchar_t *local)
{
NAME *nm = ZeroMalloc(sizeof(NAME));
if (UniIsEmptyStr(common_name) == false)
{
nm->CommonName = CopyUniStr(common_name);
}
if (UniIsEmptyStr(organization) == false)
{
nm->Organization = CopyUniStr(organization);
}
if (UniIsEmptyStr(unit) == false)
{
nm->Unit = CopyUniStr(unit);
}
if (UniIsEmptyStr(country) == false)
{
nm->Country = CopyUniStr(country);
}
if (UniIsEmptyStr(state) == false)
{
nm->State = CopyUniStr(state);
}
if (UniIsEmptyStr(local) == false)
{
nm->Local = CopyUniStr(local);
}
return nm;
}
// Check the expiration date of the certificate by the current time
bool CheckXDateNow(X *x)
{
// Validate arguments
if (x == NULL)
{
return false;
}
return CheckXDate(x, SystemTime64());
}
// Check the expiration date of the certificate
bool CheckXDate(X *x, UINT64 current_system_time)
{
// Validate arguments
if (x == NULL)
{
return false;
}
if (x->notBefore >= current_system_time || x->notAfter <= current_system_time)
{
return false;
}
return true;
}
// Read the expiration date of the certificate
void LoadXDates(X *x)
{
// Validate arguments
if (x == NULL)
{
return;
}
x->notBefore = Asn1TimeToUINT64((ASN1_TIME *)X509_get0_notBefore(x->x509));
x->notAfter = Asn1TimeToUINT64((ASN1_TIME *)X509_get0_notAfter(x->x509));
}
// Convert the 64bit system time to ASN1 time
bool UINT64ToAsn1Time(void *asn1_time, UINT64 t)
{
SYSTEMTIME st;
// Validate arguments
if (asn1_time == NULL)
{
return false;
}
UINT64ToSystem(&st, t);
return SystemToAsn1Time(asn1_time, &st);
}
// Convert the system time to the ASN1 time
bool SystemToAsn1Time(void *asn1_time, SYSTEMTIME *s)
{
char tmp[20];
ASN1_TIME *t;
// Validate arguments
if (asn1_time == NULL || s == NULL)
{
return false;
}
if (SystemToStr(tmp, sizeof(tmp), s) == false)
{
return false;
}
t = (ASN1_TIME *)asn1_time;
if (t->data == NULL || t->length < sizeof(tmp))
{
t->data = OPENSSL_malloc(sizeof(tmp));
}
StrCpy((char *)t->data, t->length, tmp);
t->length = StrLen(tmp);
if (t->length == 15)
{
// YYYYMMDDHHMMSSZ
t->type = V_ASN1_GENERALIZEDTIME;
}
else
{
// YYMMDDHHMMSSZ
t->type = V_ASN1_UTCTIME;
}
return true;
}
// Convert the system time to a string
bool SystemToStr(char *str, UINT size, SYSTEMTIME *s)
{
// Validate arguments
if (str == NULL || s == NULL)
{
return false;
}
if (s->wYear <= 2049)
{
// 2000 to 2049: Use YYMMDDHHMMSSZ
Format(str, size, "%02u%02u%02u%02u%02u%02uZ",
s->wYear % 100, s->wMonth, s->wDay,
s->wHour, s->wMinute, s->wSecond);
}
else
{
// 2050 to 9999: Use YYYYMMDDHHMMSSZ
Format(str, size, "%04u%02u%02u%02u%02u%02uZ",
s->wYear, s->wMonth, s->wDay,
s->wHour, s->wMinute, s->wSecond);
}
return true;
}
// Convert an ASN1 time to an UINT64 time
UINT64 Asn1TimeToUINT64(void *asn1_time)
{
SYSTEMTIME st;
// Validate arguments
if (asn1_time == NULL)
{
return 0;
}
if (Asn1TimeToSystem(&st, asn1_time) == false)
{
return 0;
}
return SystemToUINT64(&st);
}
// Converted an ASN1 time to a system time
bool Asn1TimeToSystem(SYSTEMTIME *s, void *asn1_time)
{
ASN1_TIME *t;
// Validate arguments
if (s == NULL || asn1_time == NULL)
{
return false;
}
t = (ASN1_TIME *)asn1_time;
if (StrToSystem(s, (char *)t->data) == false)
{
return false;
}
return true;
}
// Convert the string to the system time
bool StrToSystem(SYSTEMTIME *s, char *str)
{
char century[3] = {0, 0, 0};
bool fourdigityear = false;
// Validate arguments
if (s == NULL || str == NULL)
{
return false;
}
if (StrLen(str) != 13)
{
if (StrLen(str) != 15) return false;
//Year has 4 digits - save first two and use the rest
//as if it had two digits
fourdigityear = true;
century[0] = str[0];
century[1] = str[1];
str += 2;
}
if (str[12] != 'Z')
{
return false;
}
// Conversion
{
char year[3] = {str[0], str[1], 0},
month[3] = {str[2], str[3], 0},
day[3] = {str[4], str[5], 0},
hour[3] = {str[6], str[7], 0},
minute[3] = {str[8], str[9], 0},
second[3] = {str[10], str[11], 0};
Zero(s, sizeof(SYSTEMTIME));
s->wYear = ToInt(year);
if( fourdigityear ) {
s->wYear += ToInt(century) * 100;
}
else if (s->wYear >= 60)
{
s->wYear += 1900;
}
else
{
s->wYear += 2000;
}
s->wMonth = ToInt(month);
s->wDay = ToInt(day);
s->wHour = ToInt(hour);
s->wMinute = ToInt(minute);
s->wSecond = ToInt(second);
NormalizeSystem(s);
}
return true;
}
// Verify the RSA signature
bool RsaVerify(void *data, UINT data_size, void *sign, K *k)
{
return RsaVerifyEx(data, data_size, sign, k, 0);
}
bool RsaVerifyEx(void *data, UINT data_size, void *sign, K *k, UINT bits)
{
UCHAR hash_data[SIGN_HASH_SIZE];
UCHAR *decrypt_data;
RSA *rsa;
// Validate arguments
if (data == NULL || sign == NULL || k == NULL || k->private_key != false)
{
return false;
}
if (bits == 0)
{
bits = 1024;
}
rsa = (RSA*)EVP_PKEY_get0_RSA(k->pkey);
if (rsa == NULL)
{
return false;
}
decrypt_data = ZeroMalloc(RSA_size(rsa));
// Hash the data
if (HashForSign(hash_data, sizeof(hash_data), data, data_size) == false)
{
Free(decrypt_data);
return false;
}
// Decode the signature
if (RSA_public_decrypt(bits / 8, sign, decrypt_data, rsa, RSA_PKCS1_PADDING) <= 0)
{
Free(decrypt_data);
return false;
}
// Comparison
if (Cmp(decrypt_data, hash_data, SIGN_HASH_SIZE) != 0)
{
Free(decrypt_data);
return false;
}
Free(decrypt_data);
return true;
}
// RSA signature
bool RsaSign(void *dst, void *src, UINT size, K *k)
{
return RsaSignEx(dst, src, size, k, 0);
}
bool RsaSignEx(void *dst, void *src, UINT size, K *k, UINT bits)
{
UCHAR hash[SIGN_HASH_SIZE];
// Validate arguments
if (dst == NULL || src == NULL || k == NULL || EVP_PKEY_base_id(k->pkey) != EVP_PKEY_RSA)
{
return false;
}
if (bits == 0)
{
bits = 1024;
}
Zero(dst, bits / 8);
// Hash
if (HashForSign(hash, sizeof(hash), src, size) == false)
{
return false;
}
// Signature
if (RSA_private_encrypt(sizeof(hash), hash, dst, (RSA*)EVP_PKEY_get0_RSA(k->pkey), RSA_PKCS1_PADDING) <= 0)
{
return false;
}
return true;
}
// Generation of signature data by SHA-1
bool HashForSign(void *dst, UINT dst_size, void *src, UINT src_size)
{
UCHAR *buf = (UCHAR *)dst;
UCHAR sign_data[] =
{
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E,
0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
};
// Validate arguments
if (dst == NULL || src == NULL || src_size == 0 || MIN_SIGN_HASH_SIZE > dst_size)
{
return false;
}
// Header part
Copy(buf, sign_data, sizeof(sign_data));
// Hash
HashSha1(HASHED_DATA(buf), src, src_size);
return true;
}
// Decrypt with the RSA public key
bool RsaPublicDecrypt(void *dst, void *src, UINT size, K *k)
{
void *tmp;
int ret;
// Validate arguments
if (src == NULL || size == 0 || k == NULL)
{
return false;
}
tmp = ZeroMalloc(size);
LockOpenSSL();
{
ret = RSA_public_decrypt(size, src, tmp, (RSA *)EVP_PKEY_get0_RSA(k->pkey), RSA_NO_PADDING);
}
UnlockOpenSSL();
if (ret <= 0)
{
/* Debug("RSA Error: 0x%x\n",
ERR_get_error());
*/ Free(tmp);
return false;
}
Copy(dst, tmp, size);
Free(tmp);
return true;
}
// Encrypt with the RSA private key
bool RsaPrivateEncrypt(void *dst, void *src, UINT size, K *k)
{
void *tmp;
int ret;
// Validate arguments
if (src == NULL || size == 0 || k == NULL)
{
return false;
}
tmp = ZeroMalloc(size);
LockOpenSSL();
{
ret = RSA_private_encrypt(size, src, tmp, (RSA *)EVP_PKEY_get0_RSA(k->pkey), RSA_NO_PADDING);
}
UnlockOpenSSL();
if (ret <= 0)
{
Debug("RSA Error: %u\n",
ERR_GET_REASON(ERR_get_error()));
Free(tmp);
return false;
}
Copy(dst, tmp, size);
Free(tmp);
return true;
}
// Decrypt with the RSA private key
bool RsaPrivateDecrypt(void *dst, void *src, UINT size, K *k)
{
void *tmp;
int ret;
// Validate arguments
if (src == NULL || size == 0 || k == NULL)
{
return false;
}
tmp = ZeroMalloc(size);
LockOpenSSL();
{
ret = RSA_private_decrypt(size, src, tmp, (RSA *)EVP_PKEY_get0_RSA(k->pkey), RSA_NO_PADDING);
}
UnlockOpenSSL();
if (ret <= 0)
{
Free(tmp);
return false;
}
Copy(dst, tmp, size);
Free(tmp);
return true;
}
// Encrypt with the RSA public key
bool RsaPublicEncrypt(void *dst, void *src, UINT size, K *k)
{
void *tmp;
int ret;
// Validate arguments
if (src == NULL || size == 0 || k == NULL)
{
return false;
}
tmp = ZeroMalloc(size);
LockOpenSSL();
{
ret = RSA_public_encrypt(size, src, tmp, (RSA*)EVP_PKEY_get0_RSA(k->pkey), RSA_NO_PADDING);
}
UnlockOpenSSL();
if (ret <= 0)
{
return false;
}
Copy(dst, tmp, size);
Free(tmp);
return true;
}
// RSA operating environment check
bool RsaCheckEx()
{
UINT num = 20;
UINT i;
for (i = 0;i < num;i++)
{
if (RsaCheck())
{
return true;
}
SleepThread(100);
}
return false;
}
bool RsaCheck()
{
RSA *rsa;
K *priv_key, *pub_key;
BIO *bio;
char errbuf[MAX_SIZE];
UINT size = 0;
UINT bit = 1024;
// Validate arguments
// Key generation
LockOpenSSL();
{
rsa = RSA_generate_key(bit, RSA_F4, NULL, NULL);
}
UnlockOpenSSL();
if (rsa == NULL)
{
Debug("RSA_generate_key: err=%s\n", ERR_error_string(ERR_get_error(), errbuf));
return false;
}
// Secret key
bio = NewBio();
LockOpenSSL();
{
i2d_RSAPrivateKey_bio(bio, rsa);
}
UnlockOpenSSL();
BIO_seek(bio, 0);
priv_key = BioToK(bio, true, false, NULL);
FreeBio(bio);
// Public key
bio = NewBio();
LockOpenSSL();
{
i2d_RSA_PUBKEY_bio(bio, rsa);
}
UnlockOpenSSL();
BIO_seek(bio, 0);
pub_key = BioToK(bio, false, false, NULL);
FreeBio(bio);
RSA_free(rsa);
size = RsaPublicSize(pub_key);
if (size != ((bit + 7) / 8))
{
FreeK(priv_key);
FreeK(pub_key);
return false;
}
FreeK(priv_key);
FreeK(pub_key);
return true;
}
// Generation of RSA key
bool RsaGen(K **priv, K **pub, UINT bit)
{
RSA *rsa;
K *priv_key, *pub_key;
BIO *bio;
char errbuf[MAX_SIZE];
UINT size = 0;
// Validate arguments
if (priv == NULL || pub == NULL)
{
return false;
}
if (bit == 0)
{
bit = 1024;
}
// Key generation
LockOpenSSL();
{
rsa = RSA_generate_key(bit, RSA_F4, NULL, NULL);
}
UnlockOpenSSL();
if (rsa == NULL)
{
Debug("RSA_generate_key: err=%s\n", ERR_error_string(ERR_get_error(), errbuf));
return false;
}
// Secret key
bio = NewBio();
LockOpenSSL();
{
i2d_RSAPrivateKey_bio(bio, rsa);
}
UnlockOpenSSL();
BIO_seek(bio, 0);
priv_key = BioToK(bio, true, false, NULL);
FreeBio(bio);
// Public key
bio = NewBio();
LockOpenSSL();
{
i2d_RSA_PUBKEY_bio(bio, rsa);
}
UnlockOpenSSL();
BIO_seek(bio, 0);
pub_key = BioToK(bio, false, false, NULL);
FreeBio(bio);
*priv = priv_key;
*pub = pub_key;
RSA_free(rsa);
size = RsaPublicSize(*pub);
if (size != ((bit + 7) / 8))
{
FreeK(*priv);
FreeK(*pub);
return RsaGen(priv, pub, bit);
}
return true;
}
// Confirm whether the certificate X is signed by the issuer of the certificate x_issuer
bool CheckX(X *x, X *x_issuer)
{
return CheckXEx(x, x_issuer, false, false);
}
bool CheckXEx(X *x, X *x_issuer, bool check_name, bool check_date)
{
K *k;
bool ret;
// Validate arguments
if (x == NULL || x_issuer == NULL)
{
return false;
}
k = GetKFromX(x_issuer);
if (k == NULL)
{
return false;
}
ret = CheckSignature(x, k);
if (ret)
{
if (check_name)
{
if (CompareName(x->issuer_name, x_issuer->subject_name) == false)
{
ret = false;
}
}
if (check_date)
{
if (CheckXDateNow(x_issuer) == false)
{
ret = false;
}
}
}
FreeK(k);
return ret;
}
// Confirm the signature of the certificate X with the public key K
bool CheckSignature(X *x, K *k)
{
// Validate arguments
if (x == NULL || k == NULL)
{
return false;
}
LockOpenSSL();
{
if (X509_verify(x->x509, k->pkey) == 0)
{
UnlockOpenSSL();
return false;
}
}
UnlockOpenSSL();
return true;
}
// Get the public key from the certificate
K *GetKFromX(X *x)
{
EVP_PKEY *pkey;
K *k;
// Validate arguments
if (x == NULL)
{
return NULL;
}
LockOpenSSL();
{
pkey = X509_get_pubkey(x->x509);
}
UnlockOpenSSL();
if (pkey == NULL)
{
return NULL;
}
k = ZeroMalloc(sizeof(K));
k->pkey = pkey;
return k;
}
// The name comparison
bool CompareName(NAME *n1, NAME *n2)
{
// Validate arguments
if (n1 == NULL || n2 == NULL)
{
return false;
}
// Name comparison
if (UniStrCmpi(n1->CommonName, n2->CommonName) == 0 &&
UniStrCmpi(n1->Organization, n2->Organization) == 0 &&
UniStrCmpi(n1->Unit, n2->Unit) == 0 &&
UniStrCmpi(n1->Country, n2->Country) == 0 &&
UniStrCmpi(n1->State, n2->State) == 0 &&
UniStrCmpi(n1->Local, n2->Local) == 0)
{
return true;
}
return false;
}
// Release the name of the X
void FreeXNames(X *x)
{
// Validate arguments
if (x == NULL)
{
return;
}
FreeName(x->issuer_name);
x->issuer_name = NULL;
FreeName(x->subject_name);
x->subject_name = NULL;
}
// Release the name
void FreeName(NAME *n)
{
// Validate arguments
if (n == NULL)
{
return;
}
// Release the string
Free(n->CommonName);
Free(n->Organization);
Free(n->Unit);
Free(n->Country);
Free(n->State);
Free(n->Local);
// Release the object
Free(n);
return;
}
// Get the name of the certificate
void LoadXNames(X *x)
{
X509 *x509;
// Validate arguments
if (x == NULL)
{
return;
}
x509 = x->x509;
x->issuer_name = X509NameToName(X509_get_issuer_name(x509));
x->subject_name = X509NameToName(X509_get_subject_name(x509));
}
// Convert the X509_NAME structure to the NAME structure
NAME *X509NameToName(void *xn)
{
NAME *n;
// Validate arguments
if (xn == NULL)
{
return NULL;
}
n = ZeroMalloc(sizeof(NAME));
// Get the strings one by one
n->CommonName = GetUniStrFromX509Name(xn, NID_commonName);
n->Organization = GetUniStrFromX509Name(xn, NID_organizationName);
n->Unit = GetUniStrFromX509Name(xn, NID_organizationalUnitName);
n->Country = GetUniStrFromX509Name(xn, NID_countryName);
n->State = GetUniStrFromX509Name(xn, NID_stateOrProvinceName);
n->Local = GetUniStrFromX509Name(xn, NID_localityName);
return n;
}
// Read a Unicode string from the X509_NAME structure
wchar_t *GetUniStrFromX509Name(void *xn, int nid)
{
UCHAR txt[1024];
bool b = false;
UINT i, size;
int index;
bool unicode = false;
bool is_utf_8 = false;
ASN1_OBJECT *obj;
ASN1_STRING *data;
// Validate arguments
if (xn == NULL || nid == 0)
{
return NULL;
}
Zero(txt, sizeof(txt));
if (X509_NAME_get_text_by_NID(xn, nid, (char *)txt, sizeof(txt) - 2) <= 0)
{
return NULL;
}
obj = OBJ_nid2obj(nid);
if (obj == NULL)
{
return NULL;
}
index = X509_NAME_get_index_by_OBJ(xn, obj, -1);
if (index < 0)
{
return NULL;
}
data = X509_NAME_ENTRY_get_data(X509_NAME_get_entry(xn, index));
if (data == NULL)
{
return NULL;
}
if (data->type == V_ASN1_BMPSTRING)
{
unicode = true;
}
if (data->type == V_ASN1_UTF8STRING || data->type == V_ASN1_T61STRING)
{
is_utf_8 = true;
}
size = UniStrLen((wchar_t *)txt) * 4 + 8;
for (i = 0;i < size;i++)
{
if (txt[i] >= 0x80)
{
unicode = true;
break;
}
}
if (is_utf_8)
{
wchar_t *ret;
UINT ret_size;
ret_size = CalcUtf8ToUni(txt, StrLen(txt));
ret = ZeroMalloc(ret_size + 8);
Utf8ToUni(ret, ret_size, txt, StrLen(txt));
return ret;
}
else if (unicode == false)
{
wchar_t tmp[1024];
StrToUni(tmp, sizeof(tmp), (char *)txt);
return CopyUniStr(tmp);
}
else
{
EndianUnicode((wchar_t *)txt);
return CopyUniStr((wchar_t *)txt);
}
}
// Check whether the certificate x1 equal to x2
bool CompareX(X *x1, X *x2)
{
// Validate arguments
if (x1 == NULL || x2 == NULL)
{
return false;
}
LockOpenSSL();
if (X509_cmp(x1->x509, x2->x509) == 0)
{
UnlockOpenSSL();
return true;
}
else
{
UnlockOpenSSL();
return false;
}
}
// Check whether K is private key of X
bool CheckXandK(X *x, K *k)
{
// Validate arguments
if (x == NULL || k == NULL)
{
return false;
}
LockOpenSSL();
if (X509_check_private_key(x->x509, k->pkey) != 0)
{
UnlockOpenSSL();
return true;
}
else
{
UnlockOpenSSL();
return false;
}
}
// Read a X from the file
X *FileToX(char *filename)
{
wchar_t *filename_w = CopyStrToUni(filename);
X *ret = FileToXW(filename_w);
Free(filename_w);
return ret;
}
X *FileToXW(wchar_t *filename)
{
bool text;
BUF *b;
X *x;
// Validate arguments
if (filename == NULL)
{
return NULL;
}
b = ReadDumpW(filename);
text = IsBase64(b);
x = BufToX(b, text);
FreeBuf(b);
return x;
}
// Write the X to a file
bool XToFile(X *x, char *filename, bool text)
{
wchar_t *filename_w = CopyStrToUni(filename);
bool ret = XToFileW(x, filename_w, text);
Free(filename_w);
return ret;
}
bool XToFileW(X *x, wchar_t *filename, bool text)
{
BUF *b;
bool ret;
// Validate arguments
if (x == NULL || filename == NULL)
{
return false;
}
b = XToBuf(x, text);
if (b == NULL)
{
return false;
}
ret = DumpBufW(b, filename);
FreeBuf(b);
return ret;
}
// Read a K from the file
K *FileToK(char *filename, bool private_key, char *password)
{
wchar_t *filename_w = CopyStrToUni(filename);
K *ret;
ret = FileToKW(filename_w, private_key, password);
Free(filename_w);
return ret;
}
K *FileToKW(wchar_t *filename, bool private_key, char *password)
{
bool text;
BUF *b;
K *k;
// Validate arguments
if (filename == NULL)
{
return NULL;
}
b = ReadDumpW(filename);
if (b == NULL)
{
return NULL;
}
text = IsBase64(b);
if (text == false)
{
k = BufToK(b, private_key, false, NULL);
}
else
{
k = BufToK(b, private_key, true, NULL);
if (k == NULL)
{
k = BufToK(b, private_key, true, password);
}
}
FreeBuf(b);
return k;
}
// Save the K to a file
bool KToFile(K *k, char *filename, bool text, char *password)
{
wchar_t *filename_w = CopyStrToUni(filename);
bool ret = KToFileW(k, filename_w, text, password);
Free(filename_w);
return ret;
}
bool KToFileW(K *k, wchar_t *filename, bool text, char *password)
{
BUF *b;
bool ret;
// Validate arguments
if (k == NULL || filename == NULL)
{
return false;
}
b = KToBuf(k, text, password);
if (b == NULL)
{
return false;
}
ret = DumpBufW(b, filename);
FreeBuf(b);
return ret;
}
// Convert the K to the BUF
BUF *KToBuf(K *k, bool text, char *password)
{
BUF *buf;
BIO *bio;
// Validate arguments
if (k == NULL)
{
return NULL;
}
bio = KToBio(k, text, password);
if (bio == NULL)
{
return NULL;
}
buf = BioToBuf(bio);
FreeBio(bio);
SeekBuf(buf, 0, 0);
return buf;
}
// Convert the K to the BIO
BIO *KToBio(K *k, bool text, char *password)
{
BIO *bio;
// Validate arguments
if (k == NULL)
{
return NULL;
}
bio = NewBio();
if (k->private_key)
{
// Secret key
if (text == false)
{
// Binary format
LockOpenSSL();
{
i2d_PrivateKey_bio(bio, k->pkey);
}
UnlockOpenSSL();
}
else
{
// Text format
if (password == 0 || StrLen(password) == 0)
{
// No encryption
LockOpenSSL();
{
PEM_write_bio_PrivateKey(bio, k->pkey, NULL, NULL, 0, NULL, NULL);
}
UnlockOpenSSL();
}
else
{
// Encrypt
CB_PARAM cb;
cb.password = password;
LockOpenSSL();
{
PEM_write_bio_PrivateKey(bio, k->pkey, EVP_des_ede3_cbc(),
NULL, 0, (pem_password_cb *)PKeyPasswordCallbackFunction, &cb);
}
UnlockOpenSSL();
}
}
}
else
{
// Public key
if (text == false)
{
// Binary format
LockOpenSSL();
{
i2d_PUBKEY_bio(bio, k->pkey);
}
UnlockOpenSSL();
}
else
{
// Text format
LockOpenSSL();
{
PEM_write_bio_PUBKEY(bio, k->pkey);
}
UnlockOpenSSL();
}
}
return bio;
}
// Check whether the BUF is encoded as the Base64
bool IsBase64(BUF *b)
{
UINT i;
// Validate arguments
if (b == NULL)
{
return false;
}
if (SearchAsciiInBinary(b->Buf, b->Size, "-----BEGIN", false) != INFINITE)
{
return true;
}
for (i = 0;i < b->Size;i++)
{
char c = ((char *)b->Buf)[i];
bool b = false;
if ('a' <= c && c <= 'z')
{
b = true;
}
else if ('A' <= c && c <= 'Z')
{
b = true;
}
else if ('0' <= c && c <= '9')
{
b = true;
}
else if (c == ':' || c == '.' || c == ';' || c == ',')
{
b = true;
}
else if (c == '!' || c == '&' || c == '#' || c == '(' || c == ')')
{
b = true;
}
else if (c == '-' || c == ' ')
{
b = true;
}
else if (c == 13 || c == 10 || c == EOF)
{
b = true;
}
else if (c == '\t' || c == '=' || c == '+' || c == '/')
{
b = true;
}
if (b == false)
{
return false;
}
}
return true;
}
// Check whether the K in the BUF is encrypted
bool IsEncryptedK(BUF *b, bool private_key)
{
K *k;
// Validate arguments
if (b == NULL)
{
return false;
}
if (IsBase64(b) == false)
{
return false;
}
k = BufToK(b, private_key, true, NULL);
if (k != NULL)
{
FreeK(k);
return false;
}
return true;
}
// Convert the BUF to a K
K *BufToK(BUF *b, bool private_key, bool text, char *password)
{
BIO *bio;
K *k;
// Validate arguments
if (b == NULL)
{
return NULL;
}
bio = BufToBio(b);
k = BioToK(bio, private_key, text, password);
FreeBio(bio);
return k;
}
// Release of K
void FreeK(K *k)
{
// Validate arguments
if (k == NULL)
{
return;
}
FreePKey(k->pkey);
Free(k);
}
// Release the secret key
void FreePKey(EVP_PKEY *pkey)
{
// Validate arguments
if (pkey == NULL)
{
return;
}
EVP_PKEY_free(pkey);
}
// Convert the BIO to the K
K *BioToK(BIO *bio, bool private_key, bool text, char *password)
{
EVP_PKEY *pkey;
K *k;
// Validate arguments
if (bio == NULL)
{
return NULL;
}
if (password != NULL && StrLen(password) == 0)
{
password = NULL;
}
if (private_key == false)
{
// Public key
if (text == false)
{
// Binary format
pkey = d2i_PUBKEY_bio(bio, NULL);
if (pkey == NULL)
{
return NULL;
}
}
else
{
// Text format
CB_PARAM cb;
cb.password = password;
LockOpenSSL();
{
pkey = PEM_read_bio_PUBKEY(bio, NULL, (pem_password_cb *)PKeyPasswordCallbackFunction, &cb);
}
UnlockOpenSSL();
if (pkey == NULL)
{
return NULL;
}
}
}
else
{
if (text == false)
{
// Binary format
LockOpenSSL();
{
pkey = d2i_PrivateKey_bio(bio, NULL);
}
UnlockOpenSSL();
if (pkey == NULL)
{
return NULL;
}
}
else
{
// Text format
CB_PARAM cb;
cb.password = password;
LockOpenSSL();
{
pkey = PEM_read_bio_PrivateKey(bio, NULL, (pem_password_cb *)PKeyPasswordCallbackFunction, &cb);
}
UnlockOpenSSL();
if (pkey == NULL)
{
return NULL;
}
}
}
k = ZeroMalloc(sizeof(K));
k->pkey = pkey;
k->private_key = private_key;
return k;
}
// Password callback function
int PKeyPasswordCallbackFunction(char *buf, int bufsize, int verify, void *param)
{
CB_PARAM *cb;
// Validate arguments
if (buf == NULL || param == NULL || bufsize == 0)
{
return 0;
}
cb = (CB_PARAM *)param;
if (cb->password == NULL)
{
return 0;
}
return StrCpy(buf, bufsize, cb->password);
}
// Convert the X to a BUF
BUF *XToBuf(X *x, bool text)
{
BIO *bio;
BUF *b;
// Validate arguments
if (x == NULL)
{
return NULL;
}
bio = XToBio(x, text);
if (bio == NULL)
{
return NULL;
}
b = BioToBuf(bio);
FreeBio(bio);
SeekBuf(b, 0, 0);
return b;
}
// Convert the X to a BIO
BIO *XToBio(X *x, bool text)
{
BIO *bio;
// Validate arguments
if (x == NULL)
{
return NULL;
}
bio = NewBio();
LockOpenSSL();
{
if (text == false)
{
// Binary format
i2d_X509_bio(bio, x->x509);
}
else
{
// Text format
PEM_write_bio_X509(bio, x->x509);
}
}
UnlockOpenSSL();
return bio;
}
// Release of the X
void FreeX(X *x)
{
// Validate arguments
if (x == NULL)
{
return;
}
// Release the name
FreeXNames(x);
// Release the Serial
FreeXSerial(x->serial);
if (x->do_not_free == false)
{
FreeX509(x->x509);
}
Free(x);
}
// Release of the X509
void FreeX509(X509 *x509)
{
// Validate arguments
if (x509 == NULL)
{
return;
}
LockOpenSSL();
{
X509_free(x509);
}
UnlockOpenSSL();
}
// Convert the BUF to a X
X *BufToX(BUF *b, bool text)
{
X *x;
BIO *bio;
// Validate arguments
if (b == NULL)
{
return NULL;
}
bio = BufToBio(b);
if (bio == NULL)
{
FreeBuf(b);
return NULL;
}
x = BioToX(bio, text);
FreeBio(bio);
return x;
}
// Create a new buffer by skipping the contents of the buffer to the specified string
BUF *SkipBufBeforeString(BUF *b, char *str)
{
char *tmp;
UINT tmp_size;
BUF *ret;
UINT i;
UINT offset = 0;
// Validate arguments
if (b == NULL || str == NULL)
{
return NULL;
}
tmp_size = b->Size + 1;
tmp = ZeroMalloc(tmp_size);
Copy(tmp, b->Buf, b->Size);
i = SearchStrEx(tmp, str, 0, false);
if (i != INFINITE)
{
offset = i;
}
ret = NewBuf();
WriteBuf(ret, ((UCHAR *)b->Buf) + offset, b->Size - offset);
SeekBuf(ret, 0, 0);
Free(tmp);
return ret;
}
// Get a digest of the X
void GetXDigest(X *x, UCHAR *buf, bool sha1)
{
// Validate arguments
if (x == NULL)
{
return;
}
if (sha1 == false)
{
UINT size = MD5_SIZE;
X509_digest(x->x509, EVP_md5(), buf, (unsigned int *)&size);
}
else
{
UINT size = SHA1_SIZE;
X509_digest(x->x509, EVP_sha1(), buf, (unsigned int *)&size);
}
}
// Convert BIO to X
X *BioToX(BIO *bio, bool text)
{
X *x;
X509 *x509;
// Validate arguments
if (bio == NULL)
{
return NULL;
}
LockOpenSSL();
{
// Reading x509
if (text == false)
{
// Binary mode
x509 = d2i_X509_bio(bio, NULL);
}
else
{
// Text mode
x509 = PEM_read_bio_X509(bio, NULL, NULL, NULL);
}
}
UnlockOpenSSL();
if (x509 == NULL)
{
return NULL;
}
x = X509ToX(x509);
if (x == NULL)
{
return NULL;
}
return x;
}
// Convert the X509 to X
X *X509ToX(X509 *x509)
{
X *x;
K *k;
BUF *b;
UINT size;
UINT type;
ASN1_INTEGER *s;
// Validate arguments
if (x509 == NULL)
{
return NULL;
}
x = ZeroMalloc(sizeof(X));
x->x509 = x509;
// Name
LoadXNames(x);
// Expiration date
LoadXDates(x);
// Check whether it is a root certificate
if (CompareName(x->issuer_name, x->subject_name))
{
K *pubkey = GetKFromX(x);
if (pubkey != NULL)
{
if (CheckXandK(x, pubkey))
{
x->root_cert = true;
}
FreeK(pubkey);
}
}
// Check whether there is basic constraints
if (X509_get_ext_by_NID(x509, NID_basic_constraints, -1) != -1)
{
x->has_basic_constraints = true;
}
// Get the "Certification Authority Issuer" (1.3.6.1.5.5.7.48.2) field value
if (x->root_cert == false)
{
AUTHORITY_INFO_ACCESS *ads = (AUTHORITY_INFO_ACCESS *)X509_get_ext_d2i(x509, NID_info_access, NULL, NULL);
if (ads != NULL)
{
int i;
for (i = 0; i < sk_ACCESS_DESCRIPTION_num(ads); i++)
{
ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(ads, i);
if (ad != NULL)
{
if (OBJ_obj2nid(ad->method) == NID_ad_ca_issuers && ad->location->type == GEN_URI)
{
char *uri = (char *)ASN1_STRING_data(ad->location->d.uniformResourceIdentifier);
if (IsEmptyStr(uri) == false)
{
StrCpy(x->issuer_url, sizeof(x->issuer_url), uri);
break;
}
}
}
}
AUTHORITY_INFO_ACCESS_free(ads);
}
}
// Get the Serial Number
s = X509_get_serialNumber(x509);
x->serial = NewXSerial(s->data, s->length);
if (x->serial == NULL)
{
char zero = 0;
x->serial = NewXSerial(&zero, sizeof(char));
}
k = GetKFromX(x);
if (k == NULL)
{
FreeX(x);
return NULL;
}
b = KToBuf(k, false, NULL);
size = b->Size;
type = EVP_PKEY_base_id(k->pkey);
FreeBuf(b);
//Fixed to get actual RSA key bits
x->bits = EVP_PKEY_bits(k->pkey);
FreeK(k);
if (type == EVP_PKEY_RSA)
{
x->is_compatible_bit = true;
if(x->bits != 1024 && x->bits != 1536 && x->bits != 2048 && x->bits != 3072 && x->bits != 4096)
{
x->is_compatible_bit = false;
}
else
{
x->is_compatible_bit = true;
}
/*switch (size)
{
case 162:
x->bits = 1024;
break;
case 226:
x->bits = 1536;
break;
case 294:
x->bits = 2048;
break;
case 442:
x->bits = 3072;
break;
case 550:
x->bits = 4096;
break;
default:
x->is_compatible_bit = false;
break;
}*/
}
return x;
}
// Create a BIO
BIO *NewBio()
{
return BIO_new(BIO_s_mem());
}
// Release the BIO
void FreeBio(BIO *bio)
{
// Validate arguments
if (bio == NULL)
{
return;
}
BIO_free(bio);
}
// Convert the BIO to the BUF
BUF *BioToBuf(BIO *bio)
{
BUF *b;
UINT size;
void *tmp;
// Validate arguments
if (bio == NULL)
{
return NULL;
}
BIO_seek(bio, 0);
size = (UINT)BIO_number_written(bio);
tmp = Malloc(size);
BIO_read(bio, tmp, size);
b = NewBuf();
WriteBuf(b, tmp, size);
Free(tmp);
return b;
}
// Convert the BUF to a BIO
BIO *BufToBio(BUF *b)
{
BIO *bio;
// Validate arguments
if (b == NULL)
{
return NULL;
}
LockOpenSSL();
{
bio = BIO_new(BIO_s_mem());
if (bio == NULL)
{
UnlockOpenSSL();
return NULL;
}
BIO_write(bio, b->Buf, b->Size);
BIO_seek(bio, 0);
}
UnlockOpenSSL();
return bio;
}
// New seed rand
SEEDRAND *NewSeedRand(void *seed, UINT seed_size)
{
SEEDRAND *r = ZeroMalloc(sizeof(SEEDRAND));
if (seed == NULL || seed_size == 0)
{
HashSha1(r->InitialSeed, NULL, 0);
}
else
{
HashSha1(r->InitialSeed, seed, seed_size);
}
return r;
}
// Free seed rand
void FreeSeedRand(SEEDRAND *r)
{
if (r == NULL)
{
return;
}
Free(r);
}
// Get seed rand next byte
UCHAR SeedRand8(SEEDRAND *r)
{
UCHAR tmp[SHA1_SIZE + sizeof(UINT64)];
UCHAR hash[SHA1_SIZE];
if (r == NULL)
{
return 0;
}
Copy(tmp, r->InitialSeed, SHA1_SIZE);
WRITE_UINT64(tmp + SHA1_SIZE, r->CurrentCounter);
HashSha1(hash, tmp, sizeof(tmp));
r->CurrentCounter++;
return hash[0];
}
void SeedRand(SEEDRAND *r, void *buf, UINT size)
{
UINT i;
if (buf == NULL || size == 0)
{
return;
}
for (i = 0;i < size;i++)
{
((UCHAR *)buf)[i] = SeedRand8(r);
}
}
USHORT SeedRand16(SEEDRAND *r)
{
USHORT i;
SeedRand(r, &i, sizeof(i));
return i;
}
UINT SeedRand32(SEEDRAND *r)
{
UINT i;
SeedRand(r, &i, sizeof(i));
return i;
}
UINT64 SeedRand64(SEEDRAND *r)
{
UINT64 i;
SeedRand(r, &i, sizeof(i));
return i;
}
// 128-bit random number generation
void Rand128(void *buf)
{
Rand(buf, 16);
}
// 64-bit random number generation
UINT64 Rand64()
{
UINT64 i;
Rand(&i, sizeof(i));
return i;
}
// 32-bit random number generation
UINT Rand32()
{
UINT i;
Rand(&i, sizeof(i));
return i;
}
// 16-bit random number generation
USHORT Rand16()
{
USHORT i;
Rand(&i, sizeof(i));
return i;
}
// 8-bit random number generation
UCHAR Rand8()
{
UCHAR i;
Rand(&i, sizeof(i));
return i;
}
// 1-bit random number generation
bool Rand1()
{
return (Rand32() % 2) == 0 ? false : true;
}
// Random number generation
void Rand(void *buf, UINT size)
{
// Validate arguments
if (buf == NULL || size == 0)
{
return;
}
RAND_bytes(buf, size);
}
// Delete a thread-specific information that OpenSSL has holded
void FreeOpenSSLThreadState()
{
ERR_remove_state(0);
}
// Release the Crypt library
void FreeCryptLibrary()
{
openssl_inited = false;
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
if (ossl_provider_default != NULL)
{
OSSL_PROVIDER_unload(ossl_provider_default);
ossl_provider_default = NULL;
}
if (ossl_provider_legacy != NULL)
{
OSSL_PROVIDER_unload(ossl_provider_legacy);
ossl_provider_legacy = NULL;
}
#endif
DeleteLock(openssl_lock);
openssl_lock = NULL;
// RAND_Free_For_SoftEther();
OpenSSL_FreeLock();
}
// Initialize the Crypt library
void InitCryptLibrary()
{
char tmp[16];
CheckIfIntelAesNiSupportedInit();
// RAND_Init_For_SoftEther()
openssl_lock = NewLock();
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
OPENSSL_init_ssl(OPENSSL_INIT_ADD_ALL_CIPHERS | OPENSSL_INIT_ADD_ALL_DIGESTS | OPENSSL_INIT_NO_LOAD_CONFIG, NULL);
#else
SSL_library_init();
#endif
//OpenSSL_add_all_algorithms();
OpenSSL_add_all_ciphers();
OpenSSL_add_all_digests();
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
ossl_provider_legacy = OSSL_PROVIDER_load(NULL, "legacy");
ossl_provider_default = OSSL_PROVIDER_load(NULL, "default");
#endif
GetSslLibVersion(NULL, 0);
ERR_load_crypto_strings();
SSL_load_error_strings();
ssl_clientcert_index = SSL_get_ex_new_index(0, "struct SslClientCertInfo *", NULL, NULL, NULL);
#ifdef OS_UNIX
{
char *name1 = "/dev/random";
char *name2 = "/dev/urandom";
IO *o;
o = FileOpen(name1, false);
if (o == NULL)
{
o = FileOpen(name2, false);
if (o == NULL)
{
UINT64 now = SystemTime64();
BUF *b;
UINT i;
b = NewBuf();
for (i = 0;i < 4096;i++)
{
UCHAR c = rand() % 256;
WriteBuf(b, &c, 1);
}
WriteBuf(b, &now, sizeof(now));
RAND_seed(b->Buf, b->Size);
FreeBuf(b);
}
else
{
FileClose(o);
}
}
else
{
FileClose(o);
}
}
#endif // OS_UNIX
RAND_poll();
#ifdef OS_WIN32
// RAND_screen();
#endif
Rand(tmp, sizeof(tmp));
OpenSSL_InitLock();
openssl_inited = true;
}
// Hash function
void Hash(void *dst, void *src, UINT size, bool sha)
{
// Validate arguments
if (dst == NULL || (src == NULL && size != 0))
{
return;
}
if (sha == false)
{
// MD5 hash
MD5(src, size, dst);
}
else
{
// SHA hash
Internal_SHA0(src, size, dst);
}
}
// MD4 specific hash function
void HashMd4(void *dst, void *src, UINT size)
{
// Validate arguments
if (dst == NULL || (size != 0 && src == NULL))
{
return;
}
MD4(src, size, dst);
}
// Hash with the SHA-1 and convert it to UINT
UINT HashToUINT(void *data, UINT size)
{
UCHAR hash[SHA1_SIZE];
UINT u;
// Validate arguments
if (data == NULL && size != 0)
{
return 0;
}
HashSha1(hash, data, size);
Copy(&u, hash, sizeof(UINT));
u = Endian32(u);
return u;
}
// SHA-1 specific hash function
void HashSha1(void *dst, void *src, UINT size)
{
// Validate arguments
if (dst == NULL || (size != 0 && src == NULL))
{
return;
}
SHA1(src, size, dst);
}
// SHA-256 specific hash function
void HashSha256(void *dst, void *src, UINT size)
{
// Validate arguments
if (dst == NULL || (size != 0 && src == NULL))
{
return;
}
SHA256(src, size, dst);
}
// Creating a new CRYPT object
CRYPT *NewCrypt(void *key, UINT size)
{
CRYPT *c = ZeroMalloc(sizeof(CRYPT));
c->Rc4Key = Malloc(sizeof(struct rc4_key_st));
RC4_set_key(c->Rc4Key, size, (UCHAR *)key);
return c;
}
// Release the CRYPT object
void FreeCrypt(CRYPT *c)
{
// Validate arguments
if (c == NULL)
{
return;
}
// Memory release
Free(c->Rc4Key);
Free(c);
}
// Encryption and decryption
void Encrypt(CRYPT *c, void *dst, void *src, UINT size)
{
RC4(c->Rc4Key, size, src, dst);
}
// SHA-1 hash
void Sha(UINT sha_type, void *dst, void *src, UINT size)
{
// Validate arguments
if (dst == NULL || src == NULL)
{
return;
}
switch(sha_type) {
case SHA1_160:
SHA1(src, size, dst);
break;
case SHA2_256:
SHA256(src, size, dst);
break;
case SHA2_384:
SHA384(src, size, dst);
break;
case SHA2_512:
SHA512(src, size, dst);
break;
}
}
// SHA-1 hash
void Sha1(void *dst, void *src, UINT size)
{
// Validate arguments
if (dst == NULL || src == NULL)
{
return;
}
SHA1(src, size, dst);
}
void Sha1__(void *dst, void *src, UINT size) {
Sha(SHA1_160, dst, src, size);
}
void Sha2_256(void *dst, void *src, UINT size) {
Sha(SHA2_256, dst, src, size);
}
void Sha2_384(void *dst, void *src, UINT size) {
Sha(SHA2_384, dst, src, size);
}
void Sha2_512(void *dst, void *src, UINT size) {
Sha(SHA2_512, dst, src, size);
}
// MD5 hash
void Md5(void *dst, void *src, UINT size)
{
// Validate arguments
if (dst == NULL || src == NULL)
{
return;
}
MD5(src, size, dst);
}
// 3DES encryption
void Des3Encrypt(void *dest, void *src, UINT size, DES_KEY *key, void *ivec)
{
UCHAR ivec_copy[DES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || key == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, DES_IV_SIZE);
DES_ede3_cbc_encrypt(src, dest, size,
key->k1->KeySchedule,
key->k2->KeySchedule,
key->k3->KeySchedule,
(DES_cblock *)ivec_copy,
1);
}
void Des3Encrypt2(void *dest, void *src, UINT size, DES_KEY_VALUE *k1, DES_KEY_VALUE *k2, DES_KEY_VALUE *k3, void *ivec)
{
UCHAR ivec_copy[DES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k1 == NULL || k2 == NULL || k3 == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, DES_IV_SIZE);
DES_ede3_cbc_encrypt(src, dest, size,
k1->KeySchedule,
k2->KeySchedule,
k3->KeySchedule,
(DES_cblock *)ivec_copy,
1);
}
// DES encryption
void DesEncrypt(void *dest, void *src, UINT size, DES_KEY_VALUE *k, void *ivec)
{
UCHAR ivec_copy[DES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, DES_IV_SIZE);
DES_cbc_encrypt(src, dest, size,
k->KeySchedule,
(DES_cblock *)ivec_copy,
1);
}
// 3DES decryption
void Des3Decrypt(void *dest, void *src, UINT size, DES_KEY *key, void *ivec)
{
UCHAR ivec_copy[DES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || key == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, DES_IV_SIZE);
DES_ede3_cbc_encrypt(src, dest, size,
key->k1->KeySchedule,
key->k2->KeySchedule,
key->k3->KeySchedule,
(DES_cblock *)ivec_copy,
0);
}
void Des3Decrypt2(void *dest, void *src, UINT size, DES_KEY_VALUE *k1, DES_KEY_VALUE *k2, DES_KEY_VALUE *k3, void *ivec)
{
UCHAR ivec_copy[DES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k1 == NULL || k2 == NULL || k3 == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, DES_IV_SIZE);
DES_ede3_cbc_encrypt(src, dest, size,
k1->KeySchedule,
k2->KeySchedule,
k3->KeySchedule,
(DES_cblock *)ivec_copy,
0);
}
// DES-ECB encryption
void DesEcbEncrypt(void *dst, void *src, void *key_7bytes)
{
UCHAR *key_56;
DES_cblock key;
DES_key_schedule ks;
// Validate arguments
if (dst == NULL || src == NULL || key == NULL)
{
return;
}
key_56 = (UCHAR *)key_7bytes;
Zero(&key, sizeof(key));
Zero(&ks, sizeof(ks));
key[0] = key_56[0];
key[1] = (unsigned char)(((key_56[0] << 7) & 0xFF) | (key_56[1] >> 1));
key[2] = (unsigned char)(((key_56[1] << 6) & 0xFF) | (key_56[2] >> 2));
key[3] = (unsigned char)(((key_56[2] << 5) & 0xFF) | (key_56[3] >> 3));
key[4] = (unsigned char)(((key_56[3] << 4) & 0xFF) | (key_56[4] >> 4));
key[5] = (unsigned char)(((key_56[4] << 3) & 0xFF) | (key_56[5] >> 5));
key[6] = (unsigned char)(((key_56[5] << 2) & 0xFF) | (key_56[6] >> 6));
key[7] = (unsigned char) ((key_56[6] << 1) & 0xFF);
DES_set_odd_parity(&key);
DES_set_key_unchecked(&key, &ks);
DES_ecb_encrypt(src, dst, &ks, 1);
}
// DES decryption
void DesDecrypt(void *dest, void *src, UINT size, DES_KEY_VALUE *k, void *ivec)
{
UCHAR ivec_copy[DES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, DES_IV_SIZE);
DES_cbc_encrypt(src, dest, size,
k->KeySchedule,
(DES_cblock *)ivec_copy,
0);
}
// Generate a random 3DES key
DES_KEY *Des3RandKey()
{
DES_KEY *k = ZeroMalloc(sizeof(DES_KEY));
k->k1 = DesRandKeyValue();
k->k2 = DesRandKeyValue();
k->k3 = DesRandKeyValue();
return k;
}
// Generate a random DES key
DES_KEY *DesRandKey()
{
DES_KEY *k = ZeroMalloc(sizeof(DES_KEY));
k->k1 = DesRandKeyValue();
k->k2 = DesNewKeyValue(k->k1->KeyValue);
k->k3 = DesNewKeyValue(k->k1->KeyValue);
return k;
}
// Release the 3DES key
void Des3FreeKey(DES_KEY *k)
{
// Validate arguments
if (k == NULL)
{
return;
}
DesFreeKeyValue(k->k1);
DesFreeKeyValue(k->k2);
DesFreeKeyValue(k->k3);
Free(k);
}
// Release the DES key
void DesFreeKey(DES_KEY *k)
{
Des3FreeKey(k);
}
// Create a 3DES key
DES_KEY *Des3NewKey(void *k1, void *k2, void *k3)
{
DES_KEY *k;
// Validate arguments
if (k1 == NULL || k2 == NULL || k3 == NULL)
{
return NULL;
}
k = ZeroMalloc(sizeof(DES_KEY));
k->k1 = DesNewKeyValue(k1);
k->k2 = DesNewKeyValue(k2);
k->k3 = DesNewKeyValue(k3);
return k;
}
// Create a DES key
DES_KEY *DesNewKey(void *k1)
{
return Des3NewKey(k1, k1, k1);
}
// Create a new DES key element
DES_KEY_VALUE *DesNewKeyValue(void *value)
{
DES_KEY_VALUE *v;
// Validate arguments
if (value == NULL)
{
return NULL;
}
v = ZeroMalloc(sizeof(DES_KEY_VALUE));
Copy(v->KeyValue, value, DES_KEY_SIZE);
v->KeySchedule = ZeroMalloc(sizeof(DES_key_schedule));
DES_set_key_unchecked(value, v->KeySchedule);
return v;
}
// Random generation of new DES key element
DES_KEY_VALUE *DesRandKeyValue()
{
UCHAR key_value[DES_KEY_SIZE];
DES_random_key((DES_cblock *)key_value);
return DesNewKeyValue(key_value);
}
// Release of DES key element
void DesFreeKeyValue(DES_KEY_VALUE *v)
{
// Validate arguments
if (v == NULL)
{
return;
}
Free(v->KeySchedule);
Free(v);
}
// Create a new AES key
AES_KEY_VALUE *AesNewKey(void *data, UINT size)
{
AES_KEY_VALUE *k;
// Validate arguments
if (data == NULL || (!(size == 16 || size == 24 || size == 32)))
{
return NULL;
}
k = ZeroMalloc(sizeof(AES_KEY_VALUE));
k->EncryptKey = ZeroMalloc(sizeof(struct aes_key_st));
k->DecryptKey = ZeroMalloc(sizeof(struct aes_key_st));
k->KeySize = size;
Copy(k->KeyValue, data, size);
AES_set_encrypt_key(data, size * 8, k->EncryptKey);
AES_set_decrypt_key(data, size * 8, k->DecryptKey);
return k;
}
// Release the AES key
void AesFreeKey(AES_KEY_VALUE *k)
{
// Validate arguments
if (k == NULL)
{
return;
}
Free(k->EncryptKey);
Free(k->DecryptKey);
Free(k);
}
// AES encryption
void AesEncrypt(void *dest, void *src, UINT size, AES_KEY_VALUE *k, void *ivec)
{
UCHAR ivec_copy[AES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k == NULL || ivec == NULL)
{
return;
}
#ifdef USE_INTEL_AESNI_LIBRARY
if (is_intel_aes_supported)
{
AesEncryptWithIntel(dest, src, size, k, ivec);
return;
}
#endif // USE_INTEL_AESNI_LIBRARY
Copy(ivec_copy, ivec, AES_IV_SIZE);
AES_cbc_encrypt(src, dest, size, k->EncryptKey, ivec, 1);
}
// AES decryption
void AesDecrypt(void *dest, void *src, UINT size, AES_KEY_VALUE *k, void *ivec)
{
UCHAR ivec_copy[AES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k == NULL || ivec == NULL)
{
return;
}
#ifdef USE_INTEL_AESNI_LIBRARY
if (is_intel_aes_supported)
{
AesDecryptWithIntel(dest, src, size, k, ivec);
return;
}
#endif // USE_INTEL_AESNI_LIBRARY
Copy(ivec_copy, ivec, AES_IV_SIZE);
AES_cbc_encrypt(src, dest, size, k->DecryptKey, ivec, 0);
}
// Determine whether the Intel AES-NI is supported
bool IsIntelAesNiSupported()
{
return is_intel_aes_supported;
}
void CheckIfIntelAesNiSupportedInit()
{
#ifdef USE_INTEL_AESNI_LIBRARY
if (check_for_aes_instructions())
{
is_intel_aes_supported = true;
}
else
{
is_intel_aes_supported = false;
}
#else // USE_INTEL_AESNI_LIBRARY
is_intel_aes_supported = false;
#endif // USE_INTEL_AESNI_LIBRARY
}
// Disable the Intel AES-NI
void DisableIntelAesAccel()
{
is_intel_aes_supported = false;
}
#ifdef USE_INTEL_AESNI_LIBRARY
// Encrypt AES using the Intel AES-NI
void AesEncryptWithIntel(void *dest, void *src, UINT size, AES_KEY_VALUE *k, void *ivec)
{
UCHAR ivec_copy[AES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, AES_IV_SIZE);
switch (k->KeySize)
{
case 16:
intel_AES_enc128_CBC(src, dest, k->KeyValue, (size / AES_IV_SIZE), ivec_copy);
break;
case 24:
intel_AES_enc192_CBC(src, dest, k->KeyValue, (size / AES_IV_SIZE), ivec_copy);
break;
case 32:
intel_AES_enc256_CBC(src, dest, k->KeyValue, (size / AES_IV_SIZE), ivec_copy);
break;
}
}
// Decrypt AES using the Intel AES-NI
void AesDecryptWithIntel(void *dest, void *src, UINT size, AES_KEY_VALUE *k, void *ivec)
{
UCHAR ivec_copy[AES_IV_SIZE];
// Validate arguments
if (dest == NULL || src == NULL || size == 0 || k == NULL || ivec == NULL)
{
return;
}
Copy(ivec_copy, ivec, AES_IV_SIZE);
switch (k->KeySize)
{
case 16:
intel_AES_dec128_CBC(src, dest, k->KeyValue, (size / AES_IV_SIZE), ivec_copy);
break;
case 24:
intel_AES_dec192_CBC(src, dest, k->KeyValue, (size / AES_IV_SIZE), ivec_copy);
break;
case 32:
intel_AES_dec256_CBC(src, dest, k->KeyValue, (size / AES_IV_SIZE), ivec_copy);
break;
}
}
#endif // USE_INTEL_AESNI_LIBRARY
// Calculation of HMAC-SHA-1-96
void MacSha196(void *dst, void *key, void *data, UINT data_size)
{
UCHAR tmp[HMAC_SHA1_SIZE];
// Validate arguments
if (dst == NULL || key == NULL || data == NULL)
{
return;
}
MacSha1(tmp, key, HMAC_SHA1_96_KEY_SIZE, data, data_size);
Copy(dst, tmp, HMAC_SHA1_96_HASH_SIZE);
}
// Calculation of HMAC-SHA-1
void MacSha1(void *dst, void *key, UINT key_size, void *data, UINT data_size)
{
UCHAR key_plus[SHA1_BLOCK_SIZE];
UCHAR key_plus2[SHA1_BLOCK_SIZE];
UCHAR key_plus5[SHA1_BLOCK_SIZE];
UCHAR hash4[SHA1_HASH_SIZE];
UINT i;
BUF *buf3;
BUF *buf6;
// Validate arguments
if (dst == NULL || key == NULL || data == NULL)
{
return;
}
Zero(key_plus, sizeof(key_plus));
if (key_size <= SHA1_BLOCK_SIZE)
{
Copy(key_plus, key, key_size);
}
else
{
Sha1(key_plus, key, key_size);
}
for (i = 0;i < sizeof(key_plus);i++)
{
key_plus2[i] = key_plus[i] ^ 0x36;
}
buf3 = NewBuf();
WriteBuf(buf3, key_plus2, sizeof(key_plus2));
WriteBuf(buf3, data, data_size);
Sha1(hash4, buf3->Buf, buf3->Size);
for (i = 0;i < sizeof(key_plus);i++)
{
key_plus5[i] = key_plus[i] ^ 0x5c;
}
buf6 = NewBuf();
WriteBuf(buf6, key_plus5, sizeof(key_plus5));
WriteBuf(buf6, hash4, sizeof(hash4));
Sha1(dst, buf6->Buf, buf6->Size);
FreeBuf(buf3);
FreeBuf(buf6);
}
// DH calculation
bool DhCompute(DH_CTX *dh, void *dst_priv_key, void *src_pub_key, UINT key_size)
{
int i;
BIGNUM *bn;
bool ret = false;
// Validate arguments
if (dh == NULL || dst_priv_key == NULL || src_pub_key == NULL)
{
return false;
}
if (key_size > dh->Size)
{
return false;
}
bn = BinToBigNum(src_pub_key, key_size);
i = DH_compute_key(dst_priv_key, bn, dh->dh);
if (i == dh->Size)
{
ret = true;
}
else if ((UINT)i < dh->Size)
{
UCHAR *dst2 = Clone(dst_priv_key, i);
Zero(dst_priv_key, dh->Size);
Copy(((UCHAR *)dst_priv_key) + (dh->Size - i), dst2, i);
ret = true;
}
BN_free(bn);
return ret;
}
// Creating a DH 2048bit
DH_CTX *DhNew2048()
{
return DhNew(DH_SET_2048, 2);
}
// Creating a DH 3072bit
DH_CTX *DhNew3072()
{
return DhNew(DH_SET_3072, 2);
}
// Creating a DH 4096bit
DH_CTX *DhNew4096()
{
return DhNew(DH_SET_4096, 2);
}
// Creating a DH GROUP1
DH_CTX *DhNewGroup1()
{
return DhNew(DH_GROUP1_PRIME_768, 2);
}
// Creating a DH GROUP2
DH_CTX *DhNewGroup2()
{
return DhNew(DH_GROUP2_PRIME_1024, 2);
}
// Creating a DH GROUP5
DH_CTX *DhNewGroup5()
{
return DhNew(DH_GROUP5_PRIME_1536, 2);
}
// Creating a DH SIMPLE 160bits
DH_CTX *DhNewSimple160()
{
return DhNew(DH_SIMPLE_160, 2);
}
// Convert the DH parameters to file
BUF *DhToBuf(DH_CTX *dh)
{
BIO *bio;
BUF *buf = NULL;
int r;
// Validate arguments
if (dh == NULL)
{
return NULL;
}
bio = NewBio();
r = i2d_DHparams_bio(bio, dh->dh);
if (r > 1)
{
buf = BioToBuf(bio);
}
FreeBio(bio);
return buf;
}
// Creating a new DH
DH_CTX *DhNew(char *prime, UINT g)
{
DH_CTX *dh;
BUF *buf;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
BIGNUM *dhp, *dhg;
const BIGNUM *pub, *priv;
#endif
// Validate arguments
if (prime == NULL || g == 0)
{
return NULL;
}
buf = StrToBin(prime);
dh = ZeroMalloc(sizeof(DH_CTX));
dh->dh = DH_new();
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
dhp = BinToBigNum(buf->Buf, buf->Size);
dhg = BN_new();
BN_set_word(dhg, g);
DH_set0_pqg(dh->dh, dhp, NULL, dhg);
#else
dh->dh->p = BinToBigNum(buf->Buf, buf->Size);
dh->dh->g = BN_new();
BN_set_word(dh->dh->g, g);
#endif
DH_generate_key(dh->dh);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
DH_get0_key(dh->dh, &pub, &priv);
dh->MyPublicKey = BigNumToBuf(pub);
dh->MyPrivateKey = BigNumToBuf(priv);
#else
dh->MyPublicKey = BigNumToBuf(dh->dh->pub_key);
dh->MyPrivateKey = BigNumToBuf(dh->dh->priv_key);
#endif
dh->Size = buf->Size;
FreeBuf(buf);
return dh;
}
// Release of DH
void DhFree(DH_CTX *dh)
{
// Validate arguments
if (dh == NULL)
{
return;
}
DH_free(dh->dh);
FreeBuf(dh->MyPrivateKey);
FreeBuf(dh->MyPublicKey);
Free(dh);
}
/////////////////////////
// SHA0 implementation //
/////////////////////////
// Source codes from:
// https://android.googlesource.com/platform/system/core/+/81df1cc77722000f8d0025c1ab00ced123aa573c/libmincrypt/sha.c
// https://android.googlesource.com/platform/system/core/+/81df1cc77722000f8d0025c1ab00ced123aa573c/include/mincrypt/hash-internal.h
// https://android.googlesource.com/platform/system/core/+/81df1cc77722000f8d0025c1ab00ced123aa573c/include/mincrypt/sha.h
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))
typedef struct MY_SHA0_CTX {
// const HASH_VTAB * f;
UINT64 count;
UCHAR buf[64];
UINT state[8]; // upto SHA2
} MY_SHA0_CTX;
#define MY_SHA0_DIGEST_SIZE 20
static void MY_SHA0_Transform(MY_SHA0_CTX* ctx) {
UINT W[80];
UINT A, B, C, D, E;
UCHAR* p = ctx->buf;
int t;
for(t = 0; t < 16; ++t) {
UINT tmp = *p++ << 24;
tmp |= *p++ << 16;
tmp |= *p++ << 8;
tmp |= *p++;
W[t] = tmp;
}
for(; t < 80; t++) {
//W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
W[t] = (1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
for(t = 0; t < 80; t++) {
UINT tmp = rol(5,A) + E + W[t];
if (t < 20)
tmp += (D^(B&(C^D))) + 0x5A827999;
else if ( t < 40)
tmp += (B^C^D) + 0x6ED9EBA1;
else if ( t < 60)
tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
else
tmp += (B^C^D) + 0xCA62C1D6;
E = D;
D = C;
C = rol(30,B);
B = A;
A = tmp;
}
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
void MY_SHA0_init(MY_SHA0_CTX* ctx) {
//ctx->f = &SHA_VTAB;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
ctx->count = 0;
}
void MY_SHA0_update(MY_SHA0_CTX* ctx, const void* data, int len) {
int i = (int) (ctx->count & 63);
const UCHAR* p = (const UCHAR*)data;
ctx->count += len;
while (len--) {
ctx->buf[i++] = *p++;
if (i == 64) {
MY_SHA0_Transform(ctx);
i = 0;
}
}
}
const UCHAR* MY_SHA0_final(MY_SHA0_CTX* ctx) {
UCHAR *p = ctx->buf;
UINT64 cnt = ctx->count * 8;
int i;
MY_SHA0_update(ctx, (UCHAR*)"\x80", 1);
while ((ctx->count & 63) != 56) {
MY_SHA0_update(ctx, (UCHAR*)"\0", 1);
}
for (i = 0; i < 8; ++i) {
UCHAR tmp = (UCHAR) (cnt >> ((7 - i) * 8));
MY_SHA0_update(ctx, &tmp, 1);
}
for (i = 0; i < 5; i++) {
UINT tmp = ctx->state[i];
*p++ = tmp >> 24;
*p++ = tmp >> 16;
*p++ = tmp >> 8;
*p++ = tmp >> 0;
}
return ctx->buf;
}
/* Convenience function */
const UCHAR* MY_SHA0_hash(const void* data, int len, UCHAR* digest) {
MY_SHA0_CTX ctx;
MY_SHA0_init(&ctx);
MY_SHA0_update(&ctx, data, len);
memcpy(digest, MY_SHA0_final(&ctx), MY_SHA0_DIGEST_SIZE);
return digest;
}
static unsigned char *Internal_SHA0(const unsigned char *d, size_t n, unsigned char *md)
{
return (unsigned char *)MY_SHA0_hash(d, (int)n, md);
}
int GetSslClientCertIndex()
{
return ssl_clientcert_index;
}
//// RFC 8439: ChaCha20 and Poly1305 for IETF Protocols
//// Implementation from libsodium: https://github.com/jedisct1/libsodium
////
//// SoftEther VPN must support OpenSSL versions between 1.0.2 to the latest version.
//// Since we are unable to use ChaCha20 and Poly1305 on OpenSSL 1.0.x,
//// we copied the C implementation from libsodium.
//// Please note that the C implementation for ChaCha20 and Poly1305 is slow than
//// the OpenSSL 1.0.0 or later's implementation for ChaCha20 and Poly1305.
////
//// If OpenSSL 1.1.0 or later is linked, we use OpenSSL's ChaCha20 and Poly1305 implementation.
/*
* ISC License
*
* Copyright (c) 2013-2018
* Frank Denis <j at pureftpd dot org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef OS_WIN32
#define inline __inline
#endif
#define poly1305_block_size 16
#define U32C(v) (v##U)
#define U32V(v) ((UINT)(v) &U32C(0xFFFFFFFF))
#define ROTATE(v, c) (ROTL32(v, c))
#define XOR(v, w) ((v) ^ (w))
#define PLUS(v, w) (U32V((v) + (w)))
#define PLUSONE(v) (PLUS((v), 1))
#define QUARTERROUND(a, b, c, d) \
a = PLUS(a, b); \
d = ROTATE(XOR(d, a), 16); \
c = PLUS(c, d); \
b = ROTATE(XOR(b, c), 12); \
a = PLUS(a, b); \
d = ROTATE(XOR(d, a), 8); \
c = PLUS(c, d); \
b = ROTATE(XOR(b, c), 7);
#define ROTL32(X, B) rotl32((X), (B))
static inline UINT
rotl32(const UINT x, const int b)
{
return (x << b) | (x >> (32 - b));
}
#define LOAD32_LE(SRC) load32_le(SRC)
static inline UINT
load32_le(const UCHAR src[4])
{
if (IsBigEndian() == false)
{
UINT w;
memcpy(&w, src, sizeof w);
return w;
}
else
{
UINT w = (UINT) src[0];
w |= (UINT) src[1] << 8;
w |= (UINT) src[2] << 16;
w |= (UINT) src[3] << 24;
return w;
}
}
#define STORE32_LE(DST, W) store32_le((DST), (W))
static inline void
store32_le(UCHAR dst[4], UINT w)
{
if (IsBigEndian() == false)
{
memcpy(dst, &w, sizeof w);
}
else
{
dst[0] = (UCHAR) w; w >>= 8;
dst[1] = (UCHAR) w; w >>= 8;
dst[2] = (UCHAR) w; w >>= 8;
dst[3] = (UCHAR) w;
}
}
#define LOAD64_LE(SRC) load64_le(SRC)
static inline UINT64
load64_le(const UCHAR src[8])
{
if (IsBigEndian() == false)
{
UINT64 w;
memcpy(&w, src, sizeof w);
return w;
}
else
{
UINT64 w = (UINT64) src[0];
w |= (UINT64) src[1] << 8;
w |= (UINT64) src[2] << 16;
w |= (UINT64) src[3] << 24;
w |= (UINT64) src[4] << 32;
w |= (UINT64) src[5] << 40;
w |= (UINT64) src[6] << 48;
w |= (UINT64) src[7] << 56;
return w;
}
}
#define STORE64_LE(DST, W) store64_le((DST), (W))
static inline void
store64_le(UCHAR dst[8], UINT64 w)
{
if (IsBigEndian() == false)
{
memcpy(dst, &w, sizeof w);
}
else
{
dst[0] = (UCHAR) w; w >>= 8;
dst[1] = (UCHAR) w; w >>= 8;
dst[2] = (UCHAR) w; w >>= 8;
dst[3] = (UCHAR) w; w >>= 8;
dst[4] = (UCHAR) w; w >>= 8;
dst[5] = (UCHAR) w; w >>= 8;
dst[6] = (UCHAR) w; w >>= 8;
dst[7] = (UCHAR) w;
}
}
typedef struct chacha_ctx {
UINT input[16];
} chacha_ctx;
#define crypto_stream_chacha20_ietf_MESSAGEBYTES_MAX \
(64ULL * (1ULL << 32))
typedef struct crypto_onetimeauth_poly1305_state {
unsigned char opaque[256];
} crypto_onetimeauth_poly1305_state;
/* 17 + sizeof(unsigned long long) + 14*sizeof(unsigned long) */
typedef struct poly1305_state_internal_t {
unsigned long r[5];
unsigned long h[5];
unsigned long pad[4];
unsigned long long leftover;
unsigned char buffer[poly1305_block_size];
unsigned char final;
} poly1305_state_internal_t;
static void
chacha_keysetup(chacha_ctx *ctx, const UCHAR *k)
{
ctx->input[0] = U32C(0x61707865);
ctx->input[1] = U32C(0x3320646e);
ctx->input[2] = U32C(0x79622d32);
ctx->input[3] = U32C(0x6b206574);
ctx->input[4] = LOAD32_LE(k + 0);
ctx->input[5] = LOAD32_LE(k + 4);
ctx->input[6] = LOAD32_LE(k + 8);
ctx->input[7] = LOAD32_LE(k + 12);
ctx->input[8] = LOAD32_LE(k + 16);
ctx->input[9] = LOAD32_LE(k + 20);
ctx->input[10] = LOAD32_LE(k + 24);
ctx->input[11] = LOAD32_LE(k + 28);
}
static void
chacha_ietf_ivsetup(chacha_ctx *ctx, const UCHAR *iv, const UCHAR *counter)
{
ctx->input[12] = counter == NULL ? 0 : LOAD32_LE(counter);
ctx->input[13] = LOAD32_LE(iv + 0);
ctx->input[14] = LOAD32_LE(iv + 4);
ctx->input[15] = LOAD32_LE(iv + 8);
}
static void
chacha20_encrypt_bytes(chacha_ctx *ctx, const UCHAR *m, UCHAR *c,
unsigned long long bytes)
{
UINT x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14,
x15;
UINT j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14,
j15;
UCHAR *ctarget = NULL;
UCHAR tmp[64];
unsigned int i;
if (!bytes) {
return; /* LCOV_EXCL_LINE */
}
j0 = ctx->input[0];
j1 = ctx->input[1];
j2 = ctx->input[2];
j3 = ctx->input[3];
j4 = ctx->input[4];
j5 = ctx->input[5];
j6 = ctx->input[6];
j7 = ctx->input[7];
j8 = ctx->input[8];
j9 = ctx->input[9];
j10 = ctx->input[10];
j11 = ctx->input[11];
j12 = ctx->input[12];
j13 = ctx->input[13];
j14 = ctx->input[14];
j15 = ctx->input[15];
for (;;) {
if (bytes < 64) {
memset(tmp, 0, 64);
for (i = 0; i < bytes; ++i) {
tmp[i] = m[i];
}
m = tmp;
ctarget = c;
c = tmp;
}
x0 = j0;
x1 = j1;
x2 = j2;
x3 = j3;
x4 = j4;
x5 = j5;
x6 = j6;
x7 = j7;
x8 = j8;
x9 = j9;
x10 = j10;
x11 = j11;
x12 = j12;
x13 = j13;
x14 = j14;
x15 = j15;
for (i = 20; i > 0; i -= 2) {
QUARTERROUND(x0, x4, x8, x12)
QUARTERROUND(x1, x5, x9, x13)
QUARTERROUND(x2, x6, x10, x14)
QUARTERROUND(x3, x7, x11, x15)
QUARTERROUND(x0, x5, x10, x15)
QUARTERROUND(x1, x6, x11, x12)
QUARTERROUND(x2, x7, x8, x13)
QUARTERROUND(x3, x4, x9, x14)
}
x0 = PLUS(x0, j0);
x1 = PLUS(x1, j1);
x2 = PLUS(x2, j2);
x3 = PLUS(x3, j3);
x4 = PLUS(x4, j4);
x5 = PLUS(x5, j5);
x6 = PLUS(x6, j6);
x7 = PLUS(x7, j7);
x8 = PLUS(x8, j8);
x9 = PLUS(x9, j9);
x10 = PLUS(x10, j10);
x11 = PLUS(x11, j11);
x12 = PLUS(x12, j12);
x13 = PLUS(x13, j13);
x14 = PLUS(x14, j14);
x15 = PLUS(x15, j15);
x0 = XOR(x0, LOAD32_LE(m + 0));
x1 = XOR(x1, LOAD32_LE(m + 4));
x2 = XOR(x2, LOAD32_LE(m + 8));
x3 = XOR(x3, LOAD32_LE(m + 12));
x4 = XOR(x4, LOAD32_LE(m + 16));
x5 = XOR(x5, LOAD32_LE(m + 20));
x6 = XOR(x6, LOAD32_LE(m + 24));
x7 = XOR(x7, LOAD32_LE(m + 28));
x8 = XOR(x8, LOAD32_LE(m + 32));
x9 = XOR(x9, LOAD32_LE(m + 36));
x10 = XOR(x10, LOAD32_LE(m + 40));
x11 = XOR(x11, LOAD32_LE(m + 44));
x12 = XOR(x12, LOAD32_LE(m + 48));
x13 = XOR(x13, LOAD32_LE(m + 52));
x14 = XOR(x14, LOAD32_LE(m + 56));
x15 = XOR(x15, LOAD32_LE(m + 60));
j12 = PLUSONE(j12);
/* LCOV_EXCL_START */
if (!j12) {
j13 = PLUSONE(j13);
}
/* LCOV_EXCL_STOP */
STORE32_LE(c + 0, x0);
STORE32_LE(c + 4, x1);
STORE32_LE(c + 8, x2);
STORE32_LE(c + 12, x3);
STORE32_LE(c + 16, x4);
STORE32_LE(c + 20, x5);
STORE32_LE(c + 24, x6);
STORE32_LE(c + 28, x7);
STORE32_LE(c + 32, x8);
STORE32_LE(c + 36, x9);
STORE32_LE(c + 40, x10);
STORE32_LE(c + 44, x11);
STORE32_LE(c + 48, x12);
STORE32_LE(c + 52, x13);
STORE32_LE(c + 56, x14);
STORE32_LE(c + 60, x15);
if (bytes <= 64) {
if (bytes < 64) {
for (i = 0; i < (unsigned int) bytes; ++i) {
ctarget[i] = c[i]; /* ctarget cannot be NULL */
}
}
ctx->input[12] = j12;
ctx->input[13] = j13;
return;
}
bytes -= 64;
c += 64;
m += 64;
}
}
static int
stream_ietf_ext_ref(unsigned char *c, unsigned long long clen,
const unsigned char *n, const unsigned char *k)
{
struct chacha_ctx ctx;
if (!clen) {
return 0;
}
chacha_keysetup(&ctx, k);
chacha_ietf_ivsetup(&ctx, n, NULL);
memset(c, 0, (UINT)clen);
chacha20_encrypt_bytes(&ctx, c, c, clen);
Zero(&ctx, sizeof ctx);
return 0;
}
int
crypto_stream_chacha20_ietf(unsigned char *c, unsigned long long clen,
const unsigned char *n, const unsigned char *k)
{
return stream_ietf_ext_ref(c, clen, n, k);
}
static void
poly1305_init(poly1305_state_internal_t *st, const unsigned char key[32])
{
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff - wiped after finalization */
st->r[0] = (LOAD32_LE(&key[0])) & 0x3ffffff;
st->r[1] = (LOAD32_LE(&key[3]) >> 2) & 0x3ffff03;
st->r[2] = (LOAD32_LE(&key[6]) >> 4) & 0x3ffc0ff;
st->r[3] = (LOAD32_LE(&key[9]) >> 6) & 0x3f03fff;
st->r[4] = (LOAD32_LE(&key[12]) >> 8) & 0x00fffff;
/* h = 0 */
st->h[0] = 0;
st->h[1] = 0;
st->h[2] = 0;
st->h[3] = 0;
st->h[4] = 0;
/* save pad for later */
st->pad[0] = LOAD32_LE(&key[16]);
st->pad[1] = LOAD32_LE(&key[20]);
st->pad[2] = LOAD32_LE(&key[24]);
st->pad[3] = LOAD32_LE(&key[28]);
st->leftover = 0;
st->final = 0;
}
static void
poly1305_blocks(poly1305_state_internal_t *st, const unsigned char *m,
unsigned long long bytes)
{
const unsigned long hibit = (st->final) ? 0UL : (1UL << 24); /* 1 << 128 */
unsigned long r0, r1, r2, r3, r4;
unsigned long s1, s2, s3, s4;
unsigned long h0, h1, h2, h3, h4;
unsigned long long d0, d1, d2, d3, d4;
unsigned long c;
r0 = st->r[0];
r1 = st->r[1];
r2 = st->r[2];
r3 = st->r[3];
r4 = st->r[4];
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
h3 = st->h[3];
h4 = st->h[4];
while (bytes >= poly1305_block_size) {
/* h += m[i] */
h0 += (LOAD32_LE(m + 0)) & 0x3ffffff;
h1 += (LOAD32_LE(m + 3) >> 2) & 0x3ffffff;
h2 += (LOAD32_LE(m + 6) >> 4) & 0x3ffffff;
h3 += (LOAD32_LE(m + 9) >> 6) & 0x3ffffff;
h4 += (LOAD32_LE(m + 12) >> 8) | hibit;
/* h *= r */
d0 = ((unsigned long long) h0 * r0) + ((unsigned long long) h1 * s4) +
((unsigned long long) h2 * s3) + ((unsigned long long) h3 * s2) +
((unsigned long long) h4 * s1);
d1 = ((unsigned long long) h0 * r1) + ((unsigned long long) h1 * r0) +
((unsigned long long) h2 * s4) + ((unsigned long long) h3 * s3) +
((unsigned long long) h4 * s2);
d2 = ((unsigned long long) h0 * r2) + ((unsigned long long) h1 * r1) +
((unsigned long long) h2 * r0) + ((unsigned long long) h3 * s4) +
((unsigned long long) h4 * s3);
d3 = ((unsigned long long) h0 * r3) + ((unsigned long long) h1 * r2) +
((unsigned long long) h2 * r1) + ((unsigned long long) h3 * r0) +
((unsigned long long) h4 * s4);
d4 = ((unsigned long long) h0 * r4) + ((unsigned long long) h1 * r3) +
((unsigned long long) h2 * r2) + ((unsigned long long) h3 * r1) +
((unsigned long long) h4 * r0);
/* (partial) h %= p */
c = (unsigned long) (d0 >> 26);
h0 = (unsigned long) d0 & 0x3ffffff;
d1 += c;
c = (unsigned long) (d1 >> 26);
h1 = (unsigned long) d1 & 0x3ffffff;
d2 += c;
c = (unsigned long) (d2 >> 26);
h2 = (unsigned long) d2 & 0x3ffffff;
d3 += c;
c = (unsigned long) (d3 >> 26);
h3 = (unsigned long) d3 & 0x3ffffff;
d4 += c;
c = (unsigned long) (d4 >> 26);
h4 = (unsigned long) d4 & 0x3ffffff;
h0 += c * 5;
c = (h0 >> 26);
h0 = h0 & 0x3ffffff;
h1 += c;
m += poly1305_block_size;
bytes -= poly1305_block_size;
}
st->h[0] = h0;
st->h[1] = h1;
st->h[2] = h2;
st->h[3] = h3;
st->h[4] = h4;
}
static void
poly1305_update(poly1305_state_internal_t *st, const unsigned char *m,
unsigned long long bytes)
{
unsigned long long i;
/* handle leftover */
if (st->leftover) {
unsigned long long want = (poly1305_block_size - st->leftover);
if (want > bytes) {
want = bytes;
}
for (i = 0; i < want; i++) {
st->buffer[st->leftover + i] = m[i];
}
bytes -= want;
m += want;
st->leftover += want;
if (st->leftover < poly1305_block_size) {
return;
}
poly1305_blocks(st, st->buffer, poly1305_block_size);
st->leftover = 0;
}
/* process full blocks */
if (bytes >= poly1305_block_size) {
unsigned long long want = (bytes & ~(poly1305_block_size - 1));
poly1305_blocks(st, m, want);
m += want;
bytes -= want;
}
/* store leftover */
if (bytes) {
for (i = 0; i < bytes; i++) {
st->buffer[st->leftover + i] = m[i];
}
st->leftover += bytes;
}
}
static int
crypto_onetimeauth_poly1305_init(crypto_onetimeauth_poly1305_state *state,
const unsigned char *key)
{
poly1305_init((poly1305_state_internal_t *) (void *) state, key);
return 0;
}
static int
crypto_onetimeauth_poly1305_update(
crypto_onetimeauth_poly1305_state *state, const unsigned char *in,
unsigned long long inlen)
{
poly1305_update((poly1305_state_internal_t *) (void *) state, in, inlen);
return 0;
}
static int
stream_ietf_ext_ref_xor_ic(unsigned char *c, const unsigned char *m,
unsigned long long mlen, const unsigned char *n,
UINT ic, const unsigned char *k)
{
struct chacha_ctx ctx;
UCHAR ic_bytes[4];
if (!mlen) {
return 0;
}
STORE32_LE(ic_bytes, ic);
chacha_keysetup(&ctx, k);
chacha_ietf_ivsetup(&ctx, n, ic_bytes);
chacha20_encrypt_bytes(&ctx, m, c, mlen);
Zero(&ctx, sizeof ctx);
return 0;
}
int
crypto_stream_chacha20_ietf_xor_ic(unsigned char *c, const unsigned char *m,
unsigned long long mlen,
const unsigned char *n, UINT ic,
const unsigned char *k)
{
return stream_ietf_ext_ref_xor_ic(c, m, mlen, n, ic, k);
}
static void
poly1305_finish(poly1305_state_internal_t *st, unsigned char mac[16])
{
unsigned long h0, h1, h2, h3, h4, c;
unsigned long g0, g1, g2, g3, g4;
unsigned long long f;
unsigned long mask;
/* process the remaining block */
if (st->leftover) {
unsigned long long i = st->leftover;
st->buffer[i++] = 1;
for (; i < poly1305_block_size; i++) {
st->buffer[i] = 0;
}
st->final = 1;
poly1305_blocks(st, st->buffer, poly1305_block_size);
}
/* fully carry h */
h0 = st->h[0];
h1 = st->h[1];
h2 = st->h[2];
h3 = st->h[3];
h4 = st->h[4];
c = h1 >> 26;
h1 = h1 & 0x3ffffff;
h2 += c;
c = h2 >> 26;
h2 = h2 & 0x3ffffff;
h3 += c;
c = h3 >> 26;
h3 = h3 & 0x3ffffff;
h4 += c;
c = h4 >> 26;
h4 = h4 & 0x3ffffff;
h0 += c * 5;
c = h0 >> 26;
h0 = h0 & 0x3ffffff;
h1 += c;
/* compute h + -p */
g0 = h0 + 5;
c = g0 >> 26;
g0 &= 0x3ffffff;
g1 = h1 + c;
c = g1 >> 26;
g1 &= 0x3ffffff;
g2 = h2 + c;
c = g2 >> 26;
g2 &= 0x3ffffff;
g3 = h3 + c;
c = g3 >> 26;
g3 &= 0x3ffffff;
g4 = h4 + c - (1UL << 26);
/* select h if h < p, or h + -p if h >= p */
mask = (g4 >> ((sizeof(unsigned long) * 8) - 1)) - 1;
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
g4 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
h2 = (h2 & mask) | g2;
h3 = (h3 & mask) | g3;
h4 = (h4 & mask) | g4;
/* h = h % (2^128) */
h0 = ((h0) | (h1 << 26)) & 0xffffffff;
h1 = ((h1 >> 6) | (h2 << 20)) & 0xffffffff;
h2 = ((h2 >> 12) | (h3 << 14)) & 0xffffffff;
h3 = ((h3 >> 18) | (h4 << 8)) & 0xffffffff;
/* mac = (h + pad) % (2^128) */
f = (unsigned long long) h0 + st->pad[0];
h0 = (unsigned long) f;
f = (unsigned long long) h1 + st->pad[1] + (f >> 32);
h1 = (unsigned long) f;
f = (unsigned long long) h2 + st->pad[2] + (f >> 32);
h2 = (unsigned long) f;
f = (unsigned long long) h3 + st->pad[3] + (f >> 32);
h3 = (unsigned long) f;
STORE32_LE(mac + 0, (UINT) h0);
STORE32_LE(mac + 4, (UINT) h1);
STORE32_LE(mac + 8, (UINT) h2);
STORE32_LE(mac + 12, (UINT) h3);
/* zero out the state */
Zero((void *) st, sizeof *st);
}
static int
crypto_onetimeauth_poly1305_final(
crypto_onetimeauth_poly1305_state *state, unsigned char *out)
{
poly1305_finish((poly1305_state_internal_t *) (void *) state, out);
return 0;
}
static const unsigned char _pad0[16] = { 0 };
int
crypto_aead_chacha20poly1305_ietf_encrypt_detached(unsigned char *c,
unsigned char *mac,
unsigned long long *maclen_p,
const unsigned char *m,
unsigned long long mlen,
const unsigned char *ad,
unsigned long long adlen,
const unsigned char *nsec,
const unsigned char *npub,
const unsigned char *k)
{
crypto_onetimeauth_poly1305_state state;
unsigned char block0[64U];
unsigned char slen[8U];
(void) nsec;
Zero(block0, sizeof block0);
crypto_stream_chacha20_ietf(block0, sizeof block0, npub, k);
crypto_onetimeauth_poly1305_init(&state, block0);
crypto_onetimeauth_poly1305_update(&state, ad, adlen);
crypto_onetimeauth_poly1305_update(&state, _pad0, (0x10 - adlen) & 0xf);
crypto_stream_chacha20_ietf_xor_ic(c, m, mlen, npub, 1U, k);
crypto_onetimeauth_poly1305_update(&state, c, mlen);
crypto_onetimeauth_poly1305_update(&state, _pad0, (0x10 - mlen) & 0xf);
STORE64_LE(slen, (UINT64) adlen);
crypto_onetimeauth_poly1305_update(&state, slen, sizeof slen);
STORE64_LE(slen, (UINT64) mlen);
crypto_onetimeauth_poly1305_update(&state, slen, sizeof slen);
crypto_onetimeauth_poly1305_final(&state, mac);
Zero(&state, sizeof state);
if (maclen_p != NULL) {
*maclen_p = 16;
}
return 0;
}
int
crypto_aead_chacha20poly1305_ietf_decrypt_detached(unsigned char *m,
unsigned char *nsec,
const unsigned char *c,
unsigned long long clen,
const unsigned char *mac,
const unsigned char *ad,
unsigned long long adlen,
const unsigned char *npub,
const unsigned char *k)
{
crypto_onetimeauth_poly1305_state state;
unsigned char block0[64U];
unsigned char slen[8U];
unsigned char computed_mac[16];
unsigned long long mlen;
int ret;
(void) nsec;
Zero(block0, sizeof block0);
crypto_stream_chacha20_ietf(block0, sizeof block0, npub, k);
crypto_onetimeauth_poly1305_init(&state, block0);
crypto_onetimeauth_poly1305_update(&state, ad, adlen);
crypto_onetimeauth_poly1305_update(&state, _pad0, (0x10 - adlen) & 0xf);
mlen = clen;
crypto_onetimeauth_poly1305_update(&state, c, mlen);
crypto_onetimeauth_poly1305_update(&state, _pad0, (0x10 - mlen) & 0xf);
STORE64_LE(slen, (UINT64) adlen);
crypto_onetimeauth_poly1305_update(&state, slen, sizeof slen);
STORE64_LE(slen, (UINT64) mlen);
crypto_onetimeauth_poly1305_update(&state, slen, sizeof slen);
crypto_onetimeauth_poly1305_final(&state, computed_mac);
Zero(&state, sizeof state);
ret = Cmp((void *)computed_mac, (void *)mac, 16);
Zero(computed_mac, sizeof computed_mac);
if (m == NULL) {
return ret;
}
if (ret != 0) {
memset(m, 0, (UINT)mlen);
return -1;
}
crypto_stream_chacha20_ietf_xor_ic(m, c, mlen, npub, 1U, k);
return 0;
}
int
crypto_aead_chacha20poly1305_ietf_decrypt(unsigned char *m,
unsigned long long *mlen_p,
unsigned char *nsec,
const unsigned char *c,
unsigned long long clen,
const unsigned char *ad,
unsigned long long adlen,
const unsigned char *npub,
const unsigned char *k)
{
unsigned long long mlen = 0ULL;
int ret = -1;
if (clen >= 16) {
ret = crypto_aead_chacha20poly1305_ietf_decrypt_detached
(m, nsec,
c, clen - 16,
c + clen - AEAD_CHACHA20_POLY1305_MAC_SIZE,
ad, adlen, npub, k);
}
if (mlen_p != NULL) {
if (ret == 0) {
mlen = clen - AEAD_CHACHA20_POLY1305_MAC_SIZE;
}
*mlen_p = mlen;
}
return ret;
}
int
crypto_aead_chacha20poly1305_ietf_encrypt(unsigned char *c,
unsigned long long *clen_p,
const unsigned char *m,
unsigned long long mlen,
const unsigned char *ad,
unsigned long long adlen,
const unsigned char *nsec,
const unsigned char *npub,
const unsigned char *k)
{
unsigned long long clen = 0ULL;
int ret;
ret = crypto_aead_chacha20poly1305_ietf_encrypt_detached(c,
c + mlen, NULL,
m, mlen,
ad, adlen,
nsec, npub, k);
if (clen_p != NULL) {
if (ret == 0) {
clen = mlen + AEAD_CHACHA20_POLY1305_MAC_SIZE;
}
*clen_p = clen;
}
return ret;
}
// OpenSSL 3.0.0 to 3.0.2 has a bug with RC4-MD5.
// See: https://github.com/openssl/openssl/issues/13363 https://github.com/openssl/openssl/pull/13378
static bool ssl_is_rc4md5_buggy_version = false;
static bool ssl_has_cache_is_rc4md5_buggy_version = false;
bool IsSslLibVersionBuggyForRc4Md5()
{
bool ret = false;
if (ssl_has_cache_is_rc4md5_buggy_version)
{
return ssl_is_rc4md5_buggy_version;
}
ret = IsSslLibVersionBuggyForRc4Md5_Internal();
ssl_is_rc4md5_buggy_version = ret;
ssl_has_cache_is_rc4md5_buggy_version = true;
return ret;
}
bool IsSslLibVersionBuggyForRc4Md5_Internal()
{
UINT verint = 0;
UINT ver_major = 0;
UINT ver_minor = 0;
UINT ver_fix = 0;
UINT ver_patch = 0;
#if OPENSSL_VERSION_NUMBER < 0x10100000L
DoNothing();
#else // OPENSSL_VERSION_NUMBER
verint = OpenSSL_version_num();
ver_major = (verint >> 28) & 0x0F;
ver_minor = (verint >> 20) & 0xFF;
ver_fix = (verint >> 12) & 0xFF;
ver_patch = (verint >> 4) & 0xFF;
#endif // OPENSSL_VERSION_NUMBER
if (ver_major == 3 && ver_minor == 0)
{
if (ver_patch <= 2)
{
return true;
}
}
return false;
}
static char ssl_version_cache[MAX_PATH] = CLEAN;
void GetSslLibVersion(char *str, UINT size)
{
if (IsEmptyStr(ssl_version_cache))
{
GetSslLibVersion_Internal(ssl_version_cache, sizeof(ssl_version_cache));
}
StrCpy(str, size, ssl_version_cache);
}
void GetSslLibVersion_Internal(char *str, UINT size)
{
char tmp[MAX_PATH] = CLEAN;
UINT verint = 0;
UINT ver_major = 0;
UINT ver_minor = 0;
UINT ver_fix = 0;
UINT ver_patch = 0;
if (str == NULL)
{
return;
}
#if OPENSSL_VERSION_NUMBER < 0x10100000L
Format(tmp, sizeof(tmp), "OpenSSL <= 1.0.2");
#else // OPENSSL_VERSION_NUMBER
verint = OpenSSL_version_num();
ver_major = (verint >> 28) & 0x0F;
ver_minor = (verint >> 20) & 0xFF;
ver_fix = (verint >> 12) & 0xFF;
ver_patch = (verint >> 4) & 0xFF;
if (ver_major >= 3)
{
Format(tmp, sizeof(tmp), "OpenSSL %u.%u.%u", ver_major, ver_minor, ver_patch);
}
else
{
char c = 0;
if (ver_patch >= 1)
{
c = 'a' + (ver_patch - 1);
}
Format(tmp, sizeof(tmp), "OpenSSL %u.%u.%u%c", ver_major, ver_minor, ver_fix, c);
}
#endif // OPENSSL_VERSION_NUMBER
StrCpy(str, size, tmp);
}
// RFC 8439: ChaCha20-Poly1305-IETF Encryption with AEAD
void Aead_ChaCha20Poly1305_Ietf_Encrypt(void *dst, void *src, UINT src_size,
void *key, void *nonce, void *aad, UINT aad_size)
{
#ifdef USE_OPENSSL_AEAD_CHACHA20POLY1305
Aead_ChaCha20Poly1305_Ietf_Encrypt_OpenSSL(dst, src, src_size, key, nonce, aad, aad_size);
#else // USE_OPENSSL_AEAD_CHACHA20POLY1305
Aead_ChaCha20Poly1305_Ietf_Encrypt_Embedded(dst, src, src_size, key, nonce, aad, aad_size);
#endif // USE_OPENSSL_AEAD_CHACHA20POLY1305
}
void Aead_ChaCha20Poly1305_Ietf_Encrypt_OpenSSL(void *dst, void *src, UINT src_size,
void *key, void *nonce, void *aad, UINT aad_size)
{
#ifdef USE_OPENSSL_AEAD_CHACHA20POLY1305
EVP_CIPHER_CTX *ctx;
int outlen = 0;
if ((src_size != 0 && (dst == NULL || src == NULL)) ||
key == NULL || nonce == NULL ||
(aad_size != 0 && aad == NULL))
{
Zero(dst, src_size);
return;
}
ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, AEAD_CHACHA20_POLY1305_NONCE_SIZE, 0);
EVP_EncryptInit_ex(ctx, NULL, NULL, key, nonce);
EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_size);
EVP_EncryptUpdate(ctx, dst, &outlen, src, src_size);
EVP_EncryptFinal_ex(ctx, dst, &outlen);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, AEAD_CHACHA20_POLY1305_MAC_SIZE,
((UCHAR *)dst) + src_size);
EVP_CIPHER_CTX_free(ctx);
#endif // USE_OPENSSL_AEAD_CHACHA20POLY1305
}
void Aead_ChaCha20Poly1305_Ietf_Encrypt_Embedded(void *dst, void *src, UINT src_size,
void *key, void *nonce, void *aad, UINT aad_size)
{
if ((src_size != 0 && (dst == NULL || src == NULL)) ||
key == NULL || nonce == NULL ||
(aad_size != 0 && aad == NULL))
{
Zero(dst, src_size);
return;
}
crypto_aead_chacha20poly1305_ietf_encrypt(dst, NULL, src, src_size, aad, aad_size,
NULL, nonce, key);
}
// RFC 8439: ChaCha20-Poly1305-IETF Decryption with AEAD
bool Aead_ChaCha20Poly1305_Ietf_Decrypt(void *dst, void *src, UINT src_size, void *key, void *nonce, void *aad, UINT aad_size)
{
#ifdef USE_OPENSSL_AEAD_CHACHA20POLY1305
return Aead_ChaCha20Poly1305_Ietf_Decrypt_OpenSSL(dst, src, src_size, key,
nonce, aad, aad_size);
#else // USE_OPENSSL_AEAD_CHACHA20POLY1305
return Aead_ChaCha20Poly1305_Ietf_Decrypt_Embedded(dst, src, src_size, key,
nonce, aad, aad_size);
#endif // USE_OPENSSL_AEAD_CHACHA20POLY1305
}
bool Aead_ChaCha20Poly1305_Ietf_Decrypt_OpenSSL(void *dst, void *src, UINT src_size, void *key,
void *nonce, void *aad, UINT aad_size)
{
#ifdef USE_OPENSSL_AEAD_CHACHA20POLY1305
EVP_CIPHER_CTX *ctx;
int outlen = 0;
bool ret = false;
if ((src_size != 0 && (dst == NULL || src == NULL)) ||
key == NULL || nonce == NULL ||
(aad_size != 0 && aad == NULL) ||
(src_size < AEAD_CHACHA20_POLY1305_MAC_SIZE))
{
Zero(dst, src_size);
return false;
}
ctx = EVP_CIPHER_CTX_new();
EVP_DecryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, AEAD_CHACHA20_POLY1305_NONCE_SIZE, 0);
if (EVP_DecryptInit_ex(ctx, NULL, NULL, key, nonce) == 1)
{
if (EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_size) == 1)
{
if (EVP_DecryptUpdate(ctx, dst, &outlen, src, src_size - AEAD_CHACHA20_POLY1305_MAC_SIZE) == 1)
{
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, AEAD_CHACHA20_POLY1305_MAC_SIZE,
((UCHAR *)src) + (src_size - AEAD_CHACHA20_POLY1305_MAC_SIZE));
if (EVP_DecryptFinal_ex(ctx, dst, &outlen))
{
ret = true;
}
}
}
}
EVP_CIPHER_CTX_free(ctx);
return ret;
#else // USE_OPENSSL_AEAD_CHACHA20POLY1305
return false;
#endif // USE_OPENSSL_AEAD_CHACHA20POLY1305
}
bool Aead_ChaCha20Poly1305_Ietf_Decrypt_Embedded(void *dst, void *src, UINT src_size, void *key,
void *nonce, void *aad, UINT aad_size)
{
int ret;
if ((src_size != 0 && (dst == NULL || src == NULL)) ||
key == NULL || nonce == NULL ||
(aad_size != 0 && aad == NULL) ||
(src_size < AEAD_CHACHA20_POLY1305_MAC_SIZE))
{
Zero(dst, src_size);
return false;
}
ret = crypto_aead_chacha20poly1305_ietf_decrypt(
dst, NULL, NULL, src, src_size, aad, aad_size, nonce, key);
if (ret == -1)
{
return false;
}
return true;
}
bool Aead_ChaCha20Poly1305_Ietf_IsOpenSSL()
{
#ifdef USE_OPENSSL_AEAD_CHACHA20POLY1305
return true;
#else // USE_OPENSSL_AEAD_CHACHA20POLY1305
return false;
#endif // USE_OPENSSL_AEAD_CHACHA20POLY1305
}
// RFC 8439: ChaCha20-Poly1305-IETF AEAD Test
void Aead_ChaCha20Poly1305_Ietf_Test()
{
char *nonce_hex = "07 00 00 00 40 41 42 43 44 45 46 47";
char *plaintext_hex =
"4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c "
"65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73 "
"73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63 "
"6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f "
"6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20 "
"74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73 "
"63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69 "
"74 2e";
char *aad_hex = "50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7";
char *key_hex =
"80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f "
"90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f";
BUF *nonce = StrToBin(nonce_hex);
BUF *plaintext = StrToBin(plaintext_hex);
BUF *aad = StrToBin(aad_hex);
BUF *key = StrToBin(key_hex);
UINT plaintext_size = plaintext->Size;
UCHAR *encrypted = Malloc(plaintext_size + AEAD_CHACHA20_POLY1305_MAC_SIZE);
UCHAR *decrypted = Malloc(plaintext_size);
char encrypted_hex[MAX_SIZE];
char mac_hex[MAX_SIZE];
Print("Aead_ChaCha20Poly1305_Ietf_Test()\n\n");
Aead_ChaCha20Poly1305_Ietf_Encrypt(encrypted, plaintext->Buf, plaintext_size,
key->Buf, nonce->Buf, aad->Buf, aad->Size);
BinToStrEx(encrypted_hex, sizeof(encrypted_hex), encrypted, plaintext_size);
BinToStrEx(mac_hex, sizeof(mac_hex), encrypted + plaintext_size, AEAD_CHACHA20_POLY1305_MAC_SIZE);
Print("Encrypted:\n%s\n\n", encrypted_hex);
Print("MAC:\n%s\n\n", mac_hex);
Print("Please check the results with https://tools.ietf.org/html/rfc8439#section-2.8.2 by your great eyes.\n\n");
if (Aead_ChaCha20Poly1305_Ietf_Decrypt(decrypted, encrypted, plaintext_size + AEAD_CHACHA20_POLY1305_MAC_SIZE,
key->Buf, nonce->Buf, aad->Buf, aad->Size) == false)
{
Print("Decrypt failed.\n");
}
else
{
Print("Decrypt OK.\n");
if (Cmp(plaintext->Buf, decrypted, plaintext_size) == 0)
{
Print("Same OK.\n");
}
else
{
Print("Different !!!\n");
}
}
FreeBuf(nonce);
FreeBuf(plaintext);
FreeBuf(aad);
FreeBuf(key);
Free(encrypted);
Free(decrypted);
}