1
0
mirror of https://github.com/SoftEtherVPN/SoftEtherVPN.git synced 2024-11-25 02:49:52 +03:00
SoftEtherVPN/src/Cedar/BridgeUnix.c
Ilya Shipitsin 74f7269ef6
Merge pull request #1679 from tickerguy/tickerguy-patch-1
BridgeUnix.c: Disable MTU changes on FreeBSD
2024-04-19 16:46:16 +02:00

2712 lines
52 KiB
C

// SoftEther VPN Source Code - Developer Edition Master Branch
// Cedar Communication Module
// BridgeUnix.c
// Ethernet Bridge Program (for UNIX)
#ifdef OS_UNIX
#include "BridgeUnix.h"
#include "Server.h"
#include "VLanUnix.h"
#include "Mayaqua/Cfg.h"
#include "Mayaqua/FileIO.h"
#include "Mayaqua/Memory.h"
#include "Mayaqua/Object.h"
#include "Mayaqua/Str.h"
#include "Mayaqua/TcpIp.h"
#include "Mayaqua/Unix.h"
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#if !defined(UNIX_OPENBSD) && !defined(UNIX_SOLARIS)
#include <net/ethernet.h>
#endif
#ifdef UNIX_SOLARIS
#include <stropts.h>
#include <sys/dlpi.h>
#include <sys/sockio.h>
#endif
#ifdef BRIDGE_PCAP
#include <pcap.h>
#endif
#ifdef BRIDGE_BPF
#include <ifaddrs.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#endif
#ifdef UNIX_LINUX
#include <netpacket/packet.h>
struct my_tpacket_auxdata
{
UINT tp_status;
UINT tp_len;
UINT tp_snaplen;
USHORT tp_mac;
USHORT tp_net;
USHORT tp_vlan_tci;
USHORT tp_vlan_tpid;
};
#define MY_TP_STATUS_VLAN_VALID (1 << 4)
#define MY_TP_STATUS_VLAN_TPID_VALID (1 << 6)
#define MY_PACKET_AUXDATA 8
#endif // UNIX_LINUX
static LIST *eth_offload_list = NULL;
// Initialize
void InitEth()
{
eth_offload_list = NewList(NULL);
}
// Free
void FreeEth()
{
if (eth_offload_list != NULL)
{
FreeStrList(eth_offload_list);
eth_offload_list = NULL;
}
}
// Check whether interface description string of Ethernet device can be retrieved in this system
bool EthIsInterfaceDescriptionSupportedUnix()
{
bool ret = false;
DIRLIST *d = EnumDir("/etc/sysconfig/networking/devices/");
if (d == NULL)
{
return false;
}
if (d->NumFiles >= 1)
{
ret = true;
}
FreeDir(d);
return ret;
}
// Get interface description string
bool EthGetInterfaceDescriptionUnix(char *name, char *str, UINT size)
{
char tmp[MAX_SIZE];
bool ret = false;
BUF *b;
// Validate arguments
if (name == NULL || str == NULL)
{
return false;
}
StrCpy(str, size, name);
Format(tmp, sizeof(tmp), "/etc/sysconfig/networking/devices/ifcfg-%s", name);
b = ReadDump(tmp);
if (b != NULL)
{
char *line = CfgReadNextLine(b);
if (IsEmptyStr(line) == false)
{
if (StartWith(line, "#"))
{
char tmp[MAX_SIZE];
StrCpy(tmp, sizeof(tmp), line + 1);
Trim(tmp);
tmp[60] = 0;
StrCpy(str, size, tmp);
ret = true;
}
}
Free(line);
FreeBuf(b);
}
return ret;
}
// Open raw socket
int UnixEthOpenRawSocket()
{
#ifdef UNIX_LINUX
int s;
s = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (s < 0)
{
return INVALID_SOCKET;
}
else
{
return s;
}
#else // UNIX_LINUX
return -1;
#endif // UNIX_LINUX
}
// Is Ethernet device control supported?
bool IsEthSupported()
{
#if defined(UNIX_LINUX)
return IsEthSupportedLinux();
#elif defined(UNIX_BSD)
return true;
#elif defined(UNIX_SOLARIS)
return IsEthSupportedSolaris();
#else
return false;
#endif
}
#ifdef UNIX_LINUX
bool IsEthSupportedLinux()
{
int s;
// Try to open a raw socket
s = UnixEthOpenRawSocket();
if (s == INVALID_SOCKET)
{
// fail
return false;
}
// success
closesocket(s);
return true;
}
#endif // UNIX_LINUX
#ifdef UNIX_SOLARIS
bool IsEthSupportedSolaris()
{
return true;
}
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
// Get Ethernet device list on Solaris
TOKEN_LIST *GetEthListSolaris()
{
TOKEN_LIST *t;
int i, s;
LIST *o;
o = NewListFast(CompareStr);
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s != INVALID_SOCKET)
{
struct lifnum lifn;
lifn.lifn_family = AF_INET;
lifn.lifn_flags = 0;
if (ioctl(s, SIOCGLIFNUM, (char *)&lifn) >= 0)
{
struct lifconf lifc;
struct lifreq *buf;
UINT numifs;
UINT bufsize;
numifs = lifn.lifn_count;
Debug("NumIFs:%d\n",numifs);
bufsize = numifs * sizeof(struct lifreq);
buf = Malloc(bufsize);
lifc.lifc_family = AF_INET;
lifc.lifc_flags = 0;
lifc.lifc_len = bufsize;
lifc.lifc_buf = (char *) buf;
if (ioctl(s, SIOCGLIFCONF, (char *)&lifc) >= 0)
{
for (i = 0; i<numifs; i++)
{
if(StartWith(buf[i].lifr_name, "lo") == false) {
Add(o, CopyStr(buf[i].lifr_name));
}
}
}
Free(buf);
}
closesocket(s);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0; i < LIST_NUM(o); i++)
{
char *name = LIST_DATA(o, i);
t->Token[i] = name;
}
ReleaseList(o);
return t;
}
#endif // UNIX_SOLARIS
#ifdef UNIX_LINUX
// Get Ethernet device list on Linux
TOKEN_LIST *GetEthListLinux(bool enum_normal, bool enum_rawip)
{
struct ifreq ifr;
TOKEN_LIST *t;
UINT i, n;
int s;
LIST *o;
char name[MAX_SIZE];
if (enum_normal == false && enum_rawip)
{
return ParseToken(BRIDGE_SPECIAL_IPRAW_NAME, NULL);
}
o = NewListFast(CompareStr);
s = UnixEthOpenRawSocket();
if (s != INVALID_SOCKET)
{
n = 0;
for (i = 0;; i++)
{
Zero(&ifr, sizeof(ifr));
ifr.ifr_ifindex = i;
if (ioctl(s, SIOCGIFNAME, &ifr) >= 0)
{
n = 0;
StrCpy(name, sizeof(name), ifr.ifr_name);
Zero(&ifr, sizeof(ifr));
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), name);
if (ioctl(s, SIOCGIFHWADDR, &ifr) >= 0)
{
UINT type = ifr.ifr_hwaddr.sa_family;
if (type == 1 || type == 2 || type == 6 || type == 800 || type == 801)
{
if (IsInListStr(o, name) == false)
{
if (StartWith(name, UNIX_VLAN_BRIDGE_IFACE_PREFIX"_") == false)
{
Add(o, CopyStr(name));
}
}
}
}
}
else
{
n++;
if (n >= 64)
{
break;
}
}
}
closesocket(s);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o) + (enum_rawip ? 1 : 0);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0; i < LIST_NUM(o); i++)
{
char *name = LIST_DATA(o, i);
t->Token[i] = name;
}
if (enum_rawip)
{
t->Token[t->NumTokens - 1] = CopyStr(BRIDGE_SPECIAL_IPRAW_NAME);
}
ReleaseList(o);
return t;
}
#endif // UNIX_LINUX
#ifdef BRIDGE_PCAP
// Ethernet device list by Pcap API
TOKEN_LIST *GetEthListPcap()
{
pcap_if_t *alldevs;
char errbuf[PCAP_ERRBUF_SIZE];
LIST *o;
TOKEN_LIST *t;
int i;
o = NewListFast(CompareStr);
if( pcap_findalldevs(&alldevs,errbuf) != -1)
{
pcap_if_t *dev = alldevs;
while(dev != NULL)
{
pcap_t *p;
// Device type will be unknown until open the device?
p = pcap_open_live(dev->name, 0, false, 0, errbuf);
if(p != NULL)
{
int datalink = pcap_datalink(p);
// Debug("type:%s\n",pcap_datalink_val_to_name(datalink));
pcap_close(p);
if(datalink == DLT_EN10MB) {
// Enumerate only Ethernet type device
Add(o, CopyStr(dev->name));
}
}
dev = dev->next;
}
pcap_freealldevs(alldevs);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0; i < LIST_NUM(o); i++)
{
t->Token[i] = LIST_DATA(o, i);
}
ReleaseList(o);
return t;
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
// Ethernet device list by BPF API
TOKEN_LIST *GetEthListBpf()
{
struct ifaddrs *ifadrs;
struct sockaddr_dl *sockadr;
LIST *o;
TOKEN_LIST *t;
int i;
o = NewListFast(CompareStr);
// Enumerate network devices
if(getifaddrs( &ifadrs ) == 0)
{
struct ifaddrs *ifadr = ifadrs;
while(ifadr)
{
sockadr = (struct sockaddr_dl *)ifadr->ifa_addr;
if(sockadr->sdl_family == AF_LINK && sockadr->sdl_type == IFT_ETHER)
{
// Is this Ethernet device?
if(!IsInListStr(o,ifadr->ifa_name))
{
// Ignore the foregoing device (for device which have multiple MAC address)
Add(o, CopyStr(ifadr->ifa_name));
}
}
ifadr = ifadr -> ifa_next;
}
freeifaddrs(ifadrs);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0; i < LIST_NUM(o); i++)
{
t->Token[i] = LIST_DATA(o, i);
}
ReleaseList(o);
return t;
}
#endif // BRIDGE_BPF
// Enumerate Ethernet devices
TOKEN_LIST *GetEthList()
{
return GetEthListEx(NULL, true, false);
}
TOKEN_LIST *GetEthListEx(UINT *total_num_including_hidden, bool enum_normal, bool enum_rawip)
{
#if defined(UNIX_LINUX)
return GetEthListLinux(enum_normal, enum_rawip);
#elif defined(UNIX_SOLARIS)
return GetEthListSolaris();
#elif defined(BRIDGE_PCAP)
return GetEthListPcap();
#elif defined(BRIDGE_BPF)
return GetEthListBpf();
#else
return NULL;
#endif
}
#ifdef UNIX_LINUX
// Open Ethernet device (Linux)
ETH *OpenEthLinux(char *name, bool local, bool tapmode, char *tapaddr)
{
ETH *e;
struct ifreq ifr;
struct sockaddr_ll addr;
int s;
int index;
bool aux_ok = false;
CANCEL *c;
// Validate arguments
if (name == NULL)
{
return NULL;
}
if (StrCmpi(name, BRIDGE_SPECIAL_IPRAW_NAME) == 0)
{
return OpenEthLinuxIpRaw();
}
if (tapmode)
{
#ifndef NO_VLAN
// In tap mode
VLAN *v = NewBridgeTap(name, tapaddr, true);
if (v == NULL)
{
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->Cancel = VLanGetCancel(v);
e->IfIndex = 0;
e->Socket = INVALID_SOCKET;
e->Tap = v;
return e;
#else // NO_VLAN
return NULL;
#endif // NO_VLAN
}
s = UnixEthOpenRawSocket();
if (s == INVALID_SOCKET)
{
return NULL;
}
Zero(&ifr, sizeof(ifr));
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), name);
if (ioctl(s, SIOCGIFINDEX, &ifr) < 0)
{
closesocket(s);
return NULL;
}
index = ifr.ifr_ifindex;
Zero(&addr, sizeof(addr));
addr.sll_family = PF_PACKET;
addr.sll_protocol = htons(ETH_P_ALL);
addr.sll_ifindex = index;
if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0)
{
closesocket(s);
return NULL;
}
if (local == false)
{
// Enable promiscuous mode
Zero(&ifr, sizeof(ifr));
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), name);
if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0)
{
// Failed
closesocket(s);
return NULL;
}
ifr.ifr_flags |= IFF_PROMISC;
if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0)
{
// Failed
closesocket(s);
return NULL;
}
}
if (true)
{
int val = 1;
int ss_ret = setsockopt(s, SOL_PACKET, MY_PACKET_AUXDATA, &val, sizeof(val));
if (ss_ret < 0)
{
Debug("eth(%s): setsockopt: PACKET_AUXDATA failed.\n", name);
}
else
{
Debug("eth(%s): setsockopt: PACKET_AUXDATA ok.\n", name);
aux_ok = true;
}
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->IfIndex = index;
e->Socket = s;
e->Linux_IsAuxDataSupported = aux_ok;
c = NewCancel();
UnixDeletePipe(c->pipe_read, c->pipe_write);
c->pipe_read = c->pipe_write = -1;
UnixSetSocketNonBlockingMode(s, true);
c->SpecialFlag = true;
c->pipe_read = s;
e->Cancel = c;
// Get MTU
e->InitialMtu = EthGetMtu(e);
if (tapmode == false)
{
if (GetGlobalServerFlag(GSF_LOCALBRIDGE_NO_DISABLE_OFFLOAD) == false)
{
bool b = false;
LockList(eth_offload_list);
{
if (IsInListStr(eth_offload_list, name) == false)
{
b = true;
Add(eth_offload_list, CopyStr(name));
}
}
UnlockList(eth_offload_list);
if (b)
{
// Disable hardware offloading
UnixDisableInterfaceOffload(name);
}
}
}
return e;
}
#endif // UNIX_LINUX
// Get the MTU value
UINT EthGetMtu(ETH *e)
{
#if defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
UINT ret = 0;
#ifdef UNIX_SOLARIS
struct lifreq ifr;
#else // UNIX_SOLARIS
struct ifreq ifr;
#endif // UNIX_SOLARIS
int s;
// Validate arguments
if (e == NULL || e->Tap != NULL)
{
return 0;
}
if (e->IsRawIpMode)
{
return 0;
}
if (e->CurrentMtu != 0)
{
return e->CurrentMtu;
}
#if defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->SocketBsdIf;
#else // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->Socket;
#endif // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
Zero(&ifr, sizeof(ifr));
#ifdef UNIX_SOLARIS
StrCpy(ifr.lifr_name, sizeof(ifr.lifr_name), e->Name);
#else // UNIX_SOLARIS
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), e->Name);
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
if (ioctl(s, SIOCGLIFMTU, &ifr) < 0)
{
// failed
return 0;
}
#else // UNIX_SOLARIS
if (ioctl(s, SIOCGIFMTU, &ifr) < 0)
{
// failed
return 0;
}
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
ret = ifr.lifr_mtu + 14;
#else // UNIX_SOLARIS
ret = ifr.ifr_mtu + 14;
#endif // UNIX_SOLARIS
e->CurrentMtu = ret;
Debug("%s: GetMtu: %u\n", e->Name, ret);
return ret;
#else // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
return 0;
#endif // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
}
// Set the MTU value
bool EthSetMtu(ETH *e, UINT mtu)
{
#if defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
UINT ret = 0;
#ifdef UNIX_SOLARIS
struct lifreq ifr;
#else // UNIX_SOLARIS
struct ifreq ifr;
#endif // UNIX_SOLARIS
int s;
// Validate arguments
if (e == NULL || e->Tap != NULL || (mtu > 1 && mtu < 1514))
{
return false;
}
if (mtu == 0 && e->InitialMtu == 0)
{
return false;
}
if (e->IsRawIpMode)
{
return false;
}
if (mtu == 0)
{
// Restore initial MTU value when parameter mtu == 0
mtu = e->InitialMtu;
}
#if defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->SocketBsdIf;
#else // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->Socket;
#endif // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
if (e->CurrentMtu == mtu)
{
// No need to change
return true;
}
Zero(&ifr, sizeof(ifr));
#ifdef UNIX_SOLARIS
StrCpy(ifr.lifr_name, sizeof(ifr.lifr_name), e->Name);
ifr.lifr_mtu = mtu - 14;
#else // UNIX_SOLARIS
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), e->Name);
ifr.ifr_mtu = mtu - 14;
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
if (ioctl(s, SIOCSLIFMTU, &ifr) < 0)
{
// Failed
return false;
}
#else // UNIX_SOLARIS
if (ioctl(s, SIOCSIFMTU, &ifr) < 0)
{
// Failed
return false;
}
#endif // UNIX_SOLARIS
e->CurrentMtu = mtu;
Debug("%s: SetMtu: %u\n", e->Name, mtu);
return true;
#else // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
return false;
#endif // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
}
// Is changing MTU supported?
bool EthIsChangeMtuSupported(ETH *e)
{
#if defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
// Validate arguments
if (e == NULL || e->Tap != NULL)
{
return false;
}
if (e->IsRawIpMode)
{
return false;
}
// FreeBSD seriously dislikes MTU changes; disable if compiled on that platform
#ifndef __FreeBSD__
return true;
#else
return false;
#endif
#else // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
return false;
#endif // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
}
#ifdef UNIX_SOLARIS
// Open Ethernet adapter (Solaris)
ETH *OpenEthSolaris(char *name, bool local, bool tapmode, char *tapaddr)
{
char devname[MAX_SIZE];
int fd;
ETH *e;
CANCEL *c;
struct strioctl sioc;
// Validate arguments
if (name == NULL || tapmode != false)
{
return NULL;
}
// Parse device name
if (ParseUnixEthDeviceName(devname, sizeof(devname), name) == false)
{
return NULL;
}
// Open the device - use style 1 attachment
fd = open(devname, O_RDWR);
if (fd == -1)
{
// Failed
return NULL;
}
// Bind to SAP
if (DlipBindRequest(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Set to ignore SAP and promiscuous mode
if (DlipPromiscuous(fd, DL_PROMISC_SAP) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Set to the mode to receive self sending packet
if (DlipPromiscuous(fd, DL_PROMISC_PHYS) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Set to raw mode
sioc.ic_cmd = DLIOCRAW;
sioc.ic_timout = -1;
sioc.ic_len = 0;
sioc.ic_dp = NULL;
if (ioctl(fd, I_STR, &sioc) < 0)
{
// Failed
close(fd);
return NULL;
}
if (ioctl(fd, I_FLUSH, FLUSHR) < 0)
{
// Failed
close(fd);
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
c = NewCancel();
UnixDeletePipe(c->pipe_read, c->pipe_write);
c->pipe_read = c->pipe_write = -1;
c->SpecialFlag = true;
c->pipe_read = fd;
e->Cancel = c;
e->IfIndex = -1;
e->Socket = fd;
UnixSetSocketNonBlockingMode(fd, true);
// Get control interface
e->SocketBsdIf = socket(AF_INET, SOCK_DGRAM, 0);
// Get MTU value
e->InitialMtu = EthGetMtu(e);
return e;
}
// Set to promiscuous mode
bool DlipPromiscuous(int fd, UINT level)
{
dl_promiscon_req_t req;
struct strbuf ctl;
int flags;
// Validate arguments
if (fd == -1)
{
return false;
}
Zero(&req, sizeof(req));
req.dl_primitive = DL_PROMISCON_REQ;
req.dl_level = level;
Zero(&ctl, sizeof(ctl));
ctl.maxlen = 0;
ctl.len = sizeof(req);
ctl.buf = (char *)&req;
flags = 0;
if (putmsg(fd, &ctl, NULL, flags) < 0)
{
return false;
}
return true;
}
// Bind to a SAP
bool DlipBindRequest(int fd)
{
dl_bind_req_t req;
struct strbuf ctl;
if (fd == -1)
{
return false;
}
Zero(&req, sizeof(req));
req.dl_primitive = DL_BIND_REQ;
req.dl_service_mode = DL_CLDLS;
req.dl_sap = 0;
Zero(&ctl, sizeof(ctl));
ctl.maxlen = 0;
ctl.len = sizeof(req);
ctl.buf = (char *)&req;
if (putmsg(fd, &ctl, NULL, 0) < 0)
{
return false;
}
return true;
}
// Verify the ACK message
bool DlipReceiveAck(int fd)
{
union DL_primitives *dlp;
struct strbuf ctl;
int flags = 0;
char *buf;
// Validate arguments
if (fd == -1)
{
return false;
}
buf = MallocFast(SOLARIS_MAXDLBUF);
Zero(&ctl, sizeof(ctl));
ctl.maxlen = SOLARIS_MAXDLBUF;
ctl.len = 0;
ctl.buf = buf;
if (getmsg(fd, &ctl, NULL, &flags) < 0)
{
return false;
}
dlp = (union DL_primitives *)ctl.buf;
if (dlp->dl_primitive != (UINT)DL_OK_ACK && dlp->dl_primitive != (UINT)DL_BIND_ACK)
{
Free(buf);
return false;
}
Free(buf);
return true;
}
#endif // UNIX_SOLARIS
// Validate device name and return proper device path according to system type
bool ParseUnixEthDeviceName(char *dst_devname, UINT dst_devname_size, char *src_name)
{
UINT len, i;
struct stat s;
int err;
char *device_path;
int device_pathlen;
// Validate arguments
if (dst_devname == NULL || src_name == NULL)
{
return false;
}
// Check string length
if (IsEmptyStr(src_name))
{
return false;
}
// Solaris 10 and higher make real and virtual devices available in /dev/net
err = stat("/dev/net", &s);
if (err != -1 && S_ISDIR(s.st_mode))
{
device_path = "/dev/net/";
}
else
{
device_path = "/dev/";
}
device_pathlen = StrLen(device_path);
// Last character must be a number
if (src_name[i] < '0' || '9' < src_name[i])
{
if (src_name[i + 1] == 0)
{
return false;
}
}
StrCpy(dst_devname, dst_devname_size, device_path);
StrCpy(dst_devname + device_pathlen, dst_devname_size - device_pathlen, src_name);
dst_devname[device_pathlen + len] = 0;
return true;
}
#if defined(BRIDGE_BPF) || defined(BRIDGE_PCAP)
// Initialize captured packet data structure
struct CAPTUREBLOCK *NewCaptureBlock(UCHAR *data, UINT size) {
struct CAPTUREBLOCK *block = Malloc(sizeof(struct CAPTUREBLOCK));
block->Buf = data;
block->Size = size;
return block;
}
// Free captured packet data structure
void FreeCaptureBlock(struct CAPTUREBLOCK *block) {
Free(block);
}
#endif // BRIDGE_BPF || BRIDGE_PCAP
#ifdef BRIDGE_PCAP
// Callback function to receive arriving packet (Pcap)
void PcapHandler(u_char *user, const struct pcap_pkthdr *h, const u_char *bytes)
{
ETH *e = (ETH *) user;
struct CAPTUREBLOCK *block;
UCHAR *data;
data = Malloc(h->caplen);
Copy(data, bytes, h->caplen);
block = NewCaptureBlock(data, h->caplen);
LockQueue(e->Queue);
// Discard arriving packet when queue filled
if(e->QueueSize < BRIDGE_MAX_QUEUE_SIZE) {
InsertQueue(e->Queue, block);
e->QueueSize += h->caplen;
}
UnlockQueue(e->Queue);
Cancel(e->Cancel);
return;
}
// Relay thread for captured packet (Pcap)
void PcapThread(THREAD *thread, void *param)
{
ETH *e = (ETH *)param;
pcap_t *p = e->Pcap;
int ret;
// Notify initialize completed
NoticeThreadInit(thread);
// Return -1:Error -2:Terminated externally
ret = pcap_loop(p, -1, PcapHandler, (u_char *) e);
if(ret == -1) {
e->Socket = INVALID_SOCKET;
pcap_perror(p, "capture");
}
return;
}
// Open Ethernet adapter (Pcap)
ETH *OpenEthPcap(char *name, bool local, bool tapmode, char *tapaddr)
{
char errbuf[PCAP_ERRBUF_SIZE];
ETH *e;
pcap_t *p;
// Validate arguments
if (name == NULL || tapmode != false)
{
return NULL;
}
// Initialize error message buffer
errbuf[0] = 0;
// Open capturing device
p = pcap_open_live(name, 65535, (local == false), 1, errbuf);
if(p==NULL)
{
return NULL;
}
// Set to non-block mode
// (In old BSD OSs, 'select(2)' don't block normally for BPF device. To prevent busy loop)
/*
if(pcap_setnonblock(p, true, errbuf) == -1)
{
Debug("pcap_setnonblock:%s\n",errbuf);
pcap_close(p);
return NULL;
}
*/
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->Queue = NewQueue();
e->QueueSize = 0;
e->Cancel = NewCancel();
e->IfIndex = -1;
e->Socket = pcap_get_selectable_fd(p);
e->Pcap = p;
e->CaptureThread = NewThread(PcapThread, e);
WaitThreadInit(e->CaptureThread);
return e;
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#ifdef BRIDGE_BPF_THREAD
// Relay thread for captured packet (BPF)
void BpfThread(THREAD *thread, void *param)
{
ETH *e = (ETH *)param;
int fd = e->Socket;
int len;
int rest; // Rest size in buffer
UCHAR *next; // Head of next packet in buffer
struct CAPTUREBLOCK *block; // Data to enqueue
UCHAR *data;
struct bpf_hdr *hdr;
// Allocate the buffer
UCHAR *buf = Malloc(e->BufSize);
// Notify initialize completed
NoticeThreadInit(thread);
while(1) {
// Determining to exit loop
if(e->Socket == INVALID_SOCKET) {
break;
}
rest = read(fd, buf, e->BufSize);
if(rest < 0 && errno != EAGAIN) {
// Error
close(fd);
e->Socket = INVALID_SOCKET;
Free(buf);
Cancel(e->Cancel);
return;
}
next = buf;
LockQueue(e->Queue);
while(rest>0) {
// Cut out a packet
hdr = (struct bpf_hdr *)next;
// Discard arriving packet when queue filled
if(e->QueueSize < BRIDGE_MAX_QUEUE_SIZE) {
data = Malloc(hdr->bh_caplen);
Copy(data, next+(hdr->bh_hdrlen), hdr->bh_caplen);
block = NewCaptureBlock(data, hdr->bh_caplen);
InsertQueue(e->Queue, block);
e->QueueSize += hdr->bh_caplen;
}
// Find the head of next packet
rest -= BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
next += BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
}
UnlockQueue(e->Queue);
Cancel(e->Cancel);
}
Free(buf);
Cancel(e->Cancel);
return;
}
#endif // BRIDGE_BPF_THREAD
// Open Ethernet adapter (BPF)
ETH *OpenEthBpf(char *name, bool local, bool tapmode, char *tapaddr)
{
ETH *e;
CANCEL *c;
char devname[MAX_SIZE];
int n = 0;
int fd;
int ret;
UINT bufsize;
struct ifreq ifr;
struct timeval to;
// Find unused bpf device and open it
do {
Format(devname, sizeof(devname), "/dev/bpf%d", n++);
fd = open (devname, O_RDWR);
if(fd<0) {
perror("open");
}
} while(fd < 0 && errno == EBUSY);
// No free bpf device was found
if(fd < 0) {
Debug("BPF: No minor number are free.\n");
return NULL;
}
// Enlarge buffer size
n = 524288; // Somehow(In libpcap, this size is 32768)
while(true) {
// Specify buffer size
ioctl(fd, BIOCSBLEN, &n);
// Bind to the network device
StrCpy(ifr.ifr_name, IFNAMSIZ, name);
ret = ioctl(fd, BIOCSETIF, &ifr);
if(ret < 0) {
if(ret == ENOBUFS && n>1500) {
// Inappropriate buffer size
// Retry with half buffer size
// If buffer size is under 1500 bytes, something goes wrong
n /= 2;
continue;
}
Debug("bpf: binding network failed.\n");
close(fd);
return NULL;
} else {
break;
}
}
bufsize = n;
// Set to promiscuous mode
if(local == false) {
if (ioctl(fd, BIOCPROMISC, NULL) < 0) {
printf("bpf: promisc mode failed.\n");
close(fd);
return NULL;
}
}
// Set to immediate mode (Return immediately when packet arrives)
n = 1;
if (ioctl(fd, BIOCIMMEDIATE, &n) < 0) {
Debug("BPF: non-block mode failed.\n");
close(fd);
return NULL;
}
// Set receiving self sending packet
n = 1;
if (ioctl(fd, BIOCGSEESENT, &n) < 0) {
Debug("BPF: see sent mode failed.\n");
close(fd);
return NULL;
}
// Header complete mode (Generate whole header of sending packet)
n = 1;
if (ioctl(fd, BIOCSHDRCMPLT, &n) < 0) {
Debug("BPF: Header complete mode failed.\n");
close(fd);
return NULL;
}
// Set timeout delay to 1 second
to.tv_sec = 1;
to.tv_usec = 0;
if (ioctl(fd, BIOCSRTIMEOUT, &to) < 0) {
Debug("BPF: Read timeout setting failed.\n");
close(fd);
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->IfIndex = -1;
e->Socket = fd;
e->BufSize = bufsize;
#ifdef BRIDGE_BPF_THREAD
e->Queue = NewQueue();
e->QueueSize = 0;
e->Cancel = NewCancel();
// Start capture thread
e->CaptureThread = NewThread(BpfThread, e);
WaitThreadInit(e->CaptureThread);
#else // BRIDGE_BPF_THREAD
c = NewCancel();
UnixDeletePipe(c->pipe_read, c->pipe_write);
c->pipe_read = c->pipe_write = -1;
c->SpecialFlag = true;
c->pipe_read = fd;
e->Cancel = c;
e->Buffer = Malloc(bufsize);
e->Next = e->Buffer;
e->Rest = 0;
// Set to non-blocking mode
UnixSetSocketNonBlockingMode(fd, true);
#endif // BRIDGE_BPF_THREAD
// Open interface control socket for FreeBSD
e->SocketBsdIf = socket(AF_LOCAL, SOCK_DGRAM, 0);
// Get MTU value
e->InitialMtu = EthGetMtu(e);
return e;
}
#endif // BRIDGE_BPF
#ifdef UNIX_BSD
ETH *OpenEthBSD(char *name, bool local, bool tapmode, char *tapaddr)
{
if (tapmode)
{
#ifndef NO_VLAN
// In tap mode
VLAN *v = NewBridgeTap(name, tapaddr, true);
if (v == NULL)
{
return NULL;
}
ETH *e;
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->Cancel = VLanGetCancel(v);
e->IfIndex = 0;
e->Socket = INVALID_SOCKET;
e->Tap = v;
return e;
#else // NO_VLAN
return NULL;
#endif // NO_VLAN
}
#if defined(BRIDGE_BPF)
return OpenEthBpf(name, local, tapmode, tapaddr);
#elif defined(BRIDGE_PCAP)
return OpenEthPcap(name, local, tapmode, tapaddr);
#else
return NULL;
#endif
}
#endif // UNIX_BSD
// Open Ethernet adapter
ETH *OpenEth(char *name, bool local, bool tapmode, char *tapaddr)
{
#if defined(UNIX_LINUX)
return OpenEthLinux(name, local, tapmode, tapaddr);
#elif defined(UNIX_BSD)
return OpenEthBSD(name, local, tapmode, tapaddr);
#elif defined(UNIX_SOLARIS)
return OpenEthSolaris(name, local, tapmode, tapaddr);
#elif defined(BRIDGE_PCAP)
return OpenEthPcap(name, local, tapmode, tapaddr);
#elif defined(BRIDGE_BPF)
return OpenEthBpf(name, local, tapmode, tapaddr);
#else
return NULL;
#endif
}
typedef struct UNIXTHREAD
{
pthread_t thread;
bool finished;
} UNIXTHREAD;
// Close Ethernet adapter
void CloseEth(ETH *e)
{
// Validate arguments
if (e == NULL)
{
return;
}
if (e->IsRawIpMode)
{
CloseEthLinuxIpRaw(e);
return;
}
if (e->Tap != NULL)
{
#ifndef NO_VLAN
FreeBridgeTap(e->Tap);
#endif // NO_VLAN
}
#ifdef BRIDGE_PCAP
{
struct CAPTUREBLOCK *block;
pcap_breakloop(e->Pcap);
WaitThread(e->CaptureThread, INFINITE);
ReleaseThread(e->CaptureThread);
pcap_close(e->Pcap);
while (block = GetNext(e->Queue)) {
Free(block->Buf);
FreeCaptureBlock(block);
}
ReleaseQueue(e->Queue);
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#ifdef BRIDGE_BPF_THREAD
{
struct CAPTUREBLOCK *block;
int fd = e->Socket;
e->Socket = INVALID_SOCKET;
WaitThread(e->CaptureThread, INFINITE);
ReleaseThread(e->CaptureThread);
e->Socket = fd; // restore to close after
while (block = GetNext(e->Queue)) {
Free(block->Buf);
FreeCaptureBlock(block);
}
ReleaseQueue(e->Queue);
}
#else // BRIDGE_BPF_THREAD
Free(e->Buffer);
#endif // BRIDGE_BPF_THREAD
#endif // BRIDGE_BPF
ReleaseCancel(e->Cancel);
Free(e->Name);
Free(e->Title);
// Restore MTU value
EthSetMtu(e, 0);
if (e->Socket != INVALID_SOCKET)
{
#if defined(BRIDGE_BPF) || defined(BRIDGE_PCAP) || defined(UNIX_SOLARIS)
close(e->Socket);
#else // BRIDGE_PCAP
closesocket(e->Socket);
#endif // BRIDGE_PCAP
#if defined(BRIDGE_BPF) || defined(UNIX_SOLARIS)
if (e->SocketBsdIf != INVALID_SOCKET)
{
close(e->SocketBsdIf);
}
#endif // BRIDGE_BPF || UNIX_SOLARIS
}
Free(e);
}
// Get cancel object
CANCEL *EthGetCancel(ETH *e)
{
CANCEL *c;
// Validate arguments
if (e == NULL)
{
return NULL;
}
c = e->Cancel;
AddRef(c->ref);
return c;
}
// Read a packet
UINT EthGetPacket(ETH *e, void **data)
{
// Validate arguments
if (e == NULL || data == NULL)
{
return INFINITE;
}
#ifdef UNIX_LINUX
if (e->IsRawIpMode)
{
return EthGetPacketLinuxIpRaw(e, data);
}
#endif
if (e->Tap != NULL)
{
#ifndef NO_VLAN
// TAP mode
void *buf;
UINT size;
if (VLanGetNextPacket(e->Tap, &buf, &size) == false)
{
return INFINITE;
}
*data = buf;
return size;
#else
return INFINITE;
#endif
}
#if defined(UNIX_LINUX)
return EthGetPacketLinux(e, data);
#elif defined(UNIX_SOLARIS)
return EthGetPacketSolaris(e, data);
#elif defined(BRIDGE_PCAP)
return EthGetPacketPcap(e, data);
#elif defined(BRIDGE_BPF)
return EthGetPacketBpf(e, data);
#endif
}
#ifdef UNIX_LINUX
UINT EthGetPacketLinux(ETH *e, void **data)
{
int s, ret;
UCHAR tmp[UNIX_ETH_TMP_BUFFER_SIZE];
struct iovec msg_iov;
struct msghdr msg_header;
struct cmsghdr *cmsg;
union
{
struct cmsghdr cmsg;
char buf[CMSG_SPACE(sizeof(struct my_tpacket_auxdata))];
} cmsg_buf;
s = e->Socket;
if (s == INVALID_SOCKET)
{
return INFINITE;
}
// Read
msg_iov.iov_base = tmp;
msg_iov.iov_len = sizeof(tmp);
msg_header.msg_name = NULL;
msg_header.msg_namelen = 0;
msg_header.msg_iov = &msg_iov;
msg_header.msg_iovlen = 1;
if (e->Linux_IsAuxDataSupported)
{
memset(&cmsg_buf, 0, sizeof(cmsg_buf));
msg_header.msg_control = &cmsg_buf;
msg_header.msg_controllen = sizeof(cmsg_buf);
}
else
{
msg_header.msg_control = NULL;
msg_header.msg_controllen = 0;
}
msg_header.msg_flags = 0;
ret = recvmsg(s, &msg_header, 0);
if (ret == 0 || (ret == -1 && errno == EAGAIN))
{
// No packet
*data = NULL;
return 0;
}
else if (ret == -1 || ret > sizeof(tmp))
{
// Error
*data = NULL;
e->Socket = INVALID_SOCKET;
return INFINITE;
}
else
{
bool flag = false;
USHORT api_vlan_id = 0;
USHORT api_vlan_tpid = 0;
if (e->Linux_IsAuxDataSupported)
{
for (cmsg = CMSG_FIRSTHDR(&msg_header); cmsg; cmsg = CMSG_NXTHDR(&msg_header, cmsg))
{
struct my_tpacket_auxdata *aux;
UINT len;
USHORT vlan_tpid = 0x8100;
USHORT vlan_id = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct my_tpacket_auxdata)) ||
cmsg->cmsg_level != SOL_PACKET ||
cmsg->cmsg_type != MY_PACKET_AUXDATA)
{
continue;
}
aux = (struct my_tpacket_auxdata *)CMSG_DATA(cmsg);
if (aux != NULL)
{
if (aux->tp_vlan_tci != 0)
{
vlan_id = aux->tp_vlan_tci;
}
}
if (vlan_id != 0)
{
api_vlan_id = vlan_id;
api_vlan_tpid = vlan_tpid;
break;
}
}
if (api_vlan_id != 0 && api_vlan_tpid != 0)
{
// VLAN ID has been received with PACKET_AUXDATA.
// Insert the tag.
USHORT vlan_id_ne = Endian16(api_vlan_id);
USHORT vlan_tpid_ne = Endian16(api_vlan_tpid);
if (ret >= 14)
{
if (*((USHORT *)(tmp + 12)) != vlan_tpid_ne)
{
*data = MallocFast(ret + 4);
Copy(*data, tmp, 12);
Copy(((UCHAR *)*data) + 12, &vlan_tpid_ne, 2);
Copy(((UCHAR *)*data) + 14, &vlan_id_ne, 2);
Copy(((UCHAR *)*data) + 16, tmp + 12, ret - 12);
flag = true;
ret += 4;
}
}
}
}
// Success to read a packet (No VLAN)
if (flag == false)
{
*data = MallocFast(ret);
Copy(*data, tmp, ret);
}
return ret;
}
return 0;
}
#endif // UNIX_LINUX
#ifdef UNIX_SOLARIS
UINT EthGetPacketSolaris(ETH *e, void **data)
{
UCHAR tmp[UNIX_ETH_TMP_BUFFER_SIZE];
struct strbuf buf;
int s;
int flags = 0;
int ret;
s = e->Socket;
if (s == INVALID_SOCKET)
{
return INFINITE;
}
Zero(&buf, sizeof(buf));
buf.buf = tmp;
buf.maxlen = sizeof(tmp);
ret = getmsg(s, NULL, &buf, &flags);
if (ret < 0 || ret > sizeof(tmp))
{
if (errno == EAGAIN)
{
// No packet
*data = NULL;
return 0;
}
// Error
*data = NULL;
return INFINITE;
}
ret = buf.len;
*data = MallocFast(ret);
Copy(*data, tmp, ret);
return ret;
}
#endif // UNIX_SOLARIS
#ifdef BRIDGE_PCAP
UINT EthGetPacketPcap(ETH *e, void **data)
{
struct CAPTUREBLOCK *block;
UINT size;
LockQueue(e->Queue);
block = GetNext(e->Queue);
if(block != NULL) {
e->QueueSize -= block->Size;
}
UnlockQueue(e->Queue);
if(block == NULL) {
*data = NULL;
if(e->Socket == INVALID_SOCKET) {
return INFINITE;
}
return 0;
}
*data = block->Buf;
size = block->Size;
FreeCaptureBlock(block);
return size;
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#ifdef BRIDGE_BPF_THREAD
UINT EthGetPacketBpf(ETH *e, void **data)
{
struct CAPTUREBLOCK *block;
UINT size;
LockQueue(e->Queue);
block = GetNext(e->Queue);
if(block != NULL) {
e->QueueSize -= block->Size;
}
UnlockQueue(e->Queue);
if(block == NULL) {
*data = NULL;
if(e->Socket == INVALID_SOCKET) {
return INFINITE;
}
return 0;
}
*data = block->Buf;
size = block->Size;
FreeCaptureBlock(block);
return size;
}
#else // BRIDGE_BPF_THREAD
UINT EthGetPacketBpf(ETH *e, void **data)
{
struct bpf_hdr *hdr;
if(e->Rest<=0) {
e->Rest = read(e->Socket, e->Buffer, e->BufSize);
if(e->Rest < 0) {
*data = NULL;
if(errno != EAGAIN) {
// Error
return INFINITE;
}
// No packet
return 0;
}
e->Next = e->Buffer;
}
// Cut out a packet
hdr = (struct bpf_hdr *)e->Next;
*data = Malloc(hdr->bh_caplen);
Copy(*data, e->Next+(hdr->bh_hdrlen), hdr->bh_caplen);
// Find the head of next packet
e->Rest -= BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
e->Next += BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
return hdr->bh_caplen;
}
#endif // BRIDGE_BPF_THREAD
#endif // BRIDGE_BPF
// Send multiple packets
void EthPutPackets(ETH *e, UINT num, void **datas, UINT *sizes)
{
UINT i;
// Validate arguments
if (e == NULL || num == 0 || datas == NULL || sizes == NULL)
{
return;
}
for (i = 0; i < num; i++)
{
EthPutPacket(e, datas[i], sizes[i]);
}
}
// Send a packet
void EthPutPacket(ETH *e, void *data, UINT size)
{
int s, ret;
// Validate arguments
if (e == NULL || data == NULL)
{
return;
}
if (e->IsRawIpMode)
{
EthPutPacketLinuxIpRaw(e, data, size);
return;
}
if (size < 14 || size > MAX_PACKET_SIZE)
{
Free(data);
return;
}
if (e->Tap != NULL)
{
#ifndef NO_VLAN
// tap mode
VLanPutPacket(e->Tap, data, size);
#endif // NO_VLAN
return;
}
s = e->Socket;
if (s == INVALID_SOCKET)
{
Free(data);
return;
}
// Send to device
#ifdef BRIDGE_PCAP
ret = pcap_inject(e->Pcap, data, size);
if( ret == -1 ) {
#ifdef _DEBUG
pcap_perror(e->Pcap, "inject");
#endif // _DEBUG
Debug("EthPutPacket: ret:%d size:%d\n", ret, size);
}
#else // BRIDGE_PCAP
#ifndef UNIX_LINUX
ret = write(s, data, size);
if (ret<0)
{
Debug("EthPutPacket: ret:%d errno:%d size:%d\n", ret, errno, size);
}
#else // UNIX_LINUX
{
struct iovec msg_iov;
struct msghdr msg_header;
msg_iov.iov_base = data;
msg_iov.iov_len = size;
msg_header.msg_name = NULL;
msg_header.msg_namelen = 0;
msg_header.msg_iov = &msg_iov;
msg_header.msg_iovlen = 1;
msg_header.msg_control = NULL;
msg_header.msg_controllen = 0;
msg_header.msg_flags = 0;
ret = sendmsg(s, &msg_header, 0);
if (ret<0)
{
Debug("EthPutPacket: ret:%d errno:%d size:%d\n", ret, errno, size);
}
}
#endif // UNIX_LINUX
#endif //BRIDGE_PCAP
Free(data);
}
// Open ETH by using IP raw packets
ETH *OpenEthLinuxIpRaw()
{
ETH *e;
if (IsRawIpBridgeSupported() == false)
{
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->IsRawIpMode = true;
e->RawTcp = NewUDP4(MAKE_SPECIAL_PORT(IPPROTO_TCP), NULL);
e->RawUdp = NewUDP4(MAKE_SPECIAL_PORT(IPPROTO_UDP), NULL);
e->RawIcmp = NewUDP4(MAKE_SPECIAL_PORT(IPPROTO_ICMP), NULL);
if (e->RawTcp == NULL || e->RawUdp == NULL || e->RawIcmp == NULL)
{
ReleaseSock(e->RawTcp);
ReleaseSock(e->RawUdp);
ReleaseSock(e->RawIcmp);
Free(e);
return NULL;
}
ClearSockDfBit(e->RawTcp);
ClearSockDfBit(e->RawUdp);
ClearSockDfBit(e->RawIcmp);
SetRawSockHeaderIncludeOption(e->RawTcp, true);
SetRawSockHeaderIncludeOption(e->RawUdp, true);
SetRawSockHeaderIncludeOption(e->RawIcmp, true);
e->Name = CopyStr(BRIDGE_SPECIAL_IPRAW_NAME);
e->Title = CopyStr(BRIDGE_SPECIAL_IPRAW_NAME);
e->Cancel = NewCancel();
UnixDeletePipe(e->Cancel->pipe_read, e->Cancel->pipe_write);
e->Cancel->pipe_read = e->Cancel->pipe_write = -1;
UnixSetSocketNonBlockingMode(e->RawTcp->socket, true);
UnixSetSocketNonBlockingMode(e->RawUdp->socket, true);
UnixSetSocketNonBlockingMode(e->RawIcmp->socket, true);
e->Cancel->SpecialFlag = true;
e->Cancel->pipe_read = e->RawTcp->socket;
e->Cancel->pipe_special_read2 = e->RawUdp->socket;
e->Cancel->pipe_special_read3 = e->RawIcmp->socket;
e->RawIpMyMacAddr[2] = 0x01;
e->RawIpMyMacAddr[5] = 0x01;
SetIP(&e->MyIP, 10, 171, 7, 253);
SetIP(&e->YourIP, 10, 171, 7, 254);
e->RawIpSendQueue = NewQueueFast();
e->RawIP_TmpBufferSize = 67000;
e->RawIP_TmpBuffer = Malloc(e->RawIP_TmpBufferSize);
return e;
}
// Close ETH by using IP raw packets
void CloseEthLinuxIpRaw(ETH *e)
{
if (e == NULL)
{
return;
}
while (true)
{
BUF *buf = GetNext(e->RawIpSendQueue);
if (buf == NULL)
{
break;
}
FreeBuf(buf);
}
ReleaseQueue(e->RawIpSendQueue);
Free(e->Name);
Free(e->Title);
ReleaseSock(e->RawTcp);
ReleaseSock(e->RawUdp);
ReleaseSock(e->RawIcmp);
ReleaseCancel(e->Cancel);
Free(e->RawIP_TmpBuffer);
Free(e);
}
// Receive an IP raw packet
UINT EthGetPacketLinuxIpRaw(ETH *e, void **data)
{
UINT r;
BUF *b;
// Validate arguments
if (e == NULL || data == NULL)
{
return INFINITE;
}
if (e->RawIp_HasError)
{
return INFINITE;
}
b = GetNext(e->RawIpSendQueue);
if (b != NULL)
{
UINT size;
*data = b->Buf;
size = b->Size;
Free(b);
return size;
}
r = EthGetPacketLinuxIpRawForSock(e, data, e->RawTcp, IP_PROTO_TCP);
if (r == 0)
{
r = EthGetPacketLinuxIpRawForSock(e, data, e->RawUdp, IP_PROTO_UDP);
if (r == 0)
{
r = EthGetPacketLinuxIpRawForSock(e, data, e->RawIcmp, IP_PROTO_ICMPV4);
}
}
if (r == INFINITE)
{
e->RawIp_HasError = true;
}
return r;
}
// Receive an IP raw packet for the specified socket
UINT EthGetPacketLinuxIpRawForSock(ETH *e, void **data, SOCK *s, UINT proto)
{
UCHAR *tmp;
UINT r;
IP src_addr;
UINT src_port;
UINT ret = INFINITE;
UCHAR *retbuf;
PKT *p;
bool ok = false;
// Validate arguments
if (e == NULL || data == NULL)
{
return INFINITE;
}
tmp = e->RawIP_TmpBuffer;
LABEL_RETRY:
*data = NULL;
r = RecvFrom(s, &src_addr, &src_port, tmp, e->RawIP_TmpBufferSize);
if (r == SOCK_LATER)
{
return 0;
}
if (r == 0)
{
if (s->IgnoreRecvErr)
{
return 0;
}
else
{
return INFINITE;
}
}
ret = 14 + r;
retbuf = Malloc(ret);
*data = retbuf;
Copy(retbuf, e->RawIpYourMacAddr, 6);
Copy(retbuf + 6, e->RawIpMyMacAddr, 6);
retbuf[12] = 0x08;
retbuf[13] = 0x00;
Copy(retbuf + 14, tmp, r);
// Mangle packet
p = ParsePacket(retbuf, ret);
if (p != NULL)
{
if (p->TypeL3 == L3_IPV4)
{
IPV4_HEADER *ip;
IP original_dest_ip;
ip = p->L3.IPv4Header;
UINTToIP(&original_dest_ip, ip->DstIP);
if (IsZeroIP(&e->MyPhysicalIPForce) == false && CmpIpAddr(&e->MyPhysicalIPForce, &original_dest_ip) == 0 ||
(IsIPMyHost(&original_dest_ip) && IsLocalHostIP(&original_dest_ip) == false && IsHostIPAddress4(&original_dest_ip)))
{
if (IsZeroIP(&e->MyPhysicalIPForce) && CmpIpAddr(&e->MyPhysicalIP, &original_dest_ip) != 0)
{
// Update MyPhysicalIP
Copy(&e->MyPhysicalIP, &original_dest_ip, sizeof(IP));
// Debug("e->MyPhysicalIP = %r\n", &e->MyPhysicalIP);
}
if (IsZeroIP(&e->MyPhysicalIPForce) == false)
{
Copy(&e->MyPhysicalIP, &e->MyPhysicalIPForce, sizeof(IP));
}
ip->DstIP = IPToUINT(&e->YourIP);
ip->Checksum = 0;
ip->Checksum = IpChecksum(ip, IPV4_GET_HEADER_LEN(ip) * 5);
if (p->TypeL4 == L4_TCP)
{
TCP_HEADER *tcp = p->L4.TCPHeader;
/*
if (Endian16(tcp->SrcPort) == 80)
{
IP a, b;
UINTToIP(&a, ip->SrcIP);
UINTToIP(&b, ip->DstIP);
Debug("%r %r %u %u\n", &a, &b, Endian16(tcp->SrcPort), Endian16(tcp->DstPort));
}*/
ok = true;
}
else if (p->TypeL4 == L4_UDP)
{
UDP_HEADER *udp = p->L4.UDPHeader;
udp->Checksum = 0;
ok = true;
}
else if (p->TypeL4 == L4_ICMPV4)
{
ICMP_HEADER *icmp = p->L4.ICMPHeader;
if (icmp->Type == ICMP_TYPE_DESTINATION_UNREACHABLE || icmp->Type == ICMP_TYPE_TIME_EXCEEDED)
{
// Rewrite the Src IP of the IPv4 header of the ICMP response packet
UINT size = p->PacketSize - ((UCHAR *)icmp - (UCHAR *)p->PacketData);
UCHAR *data = (UCHAR *)icmp;
IPV4_HEADER *orig_ipv4 = (IPV4_HEADER *)(((UCHAR *)data) + sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO));
UINT orig_ipv4_size = size - (sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO));
UINT orig_ipv4_header_size = GetIpHeaderSize((UCHAR *)orig_ipv4, orig_ipv4_size);
if (orig_ipv4_header_size >= sizeof(IPV4_HEADER) && orig_ipv4_size >= orig_ipv4_header_size)
{
if (orig_ipv4->Protocol == IP_PROTO_ICMPV4)
{
// Search the inner ICMP header
UINT inner_icmp_size = orig_ipv4_size - orig_ipv4_header_size;
if (inner_icmp_size >= (sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO)))
{
ICMP_HEADER *inner_icmp = (ICMP_HEADER *)(((UCHAR *)data) +
sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO) + orig_ipv4_header_size);
if (inner_icmp->Type == ICMP_TYPE_ECHO_REQUEST)
{
ICMP_ECHO *inner_echo = (ICMP_ECHO *)(((UCHAR *)inner_icmp) + sizeof(ICMP_HEADER));
inner_icmp->Checksum = 0;
orig_ipv4->SrcIP = IPToUINT(&e->YourIP);
orig_ipv4->Checksum = 0;
orig_ipv4->Checksum = IpChecksum(orig_ipv4, orig_ipv4_header_size);
// Rewrite the outer ICMP header
if (true)
{
UCHAR *payload;
UINT payload_size;
ICMP_ECHO *echo;
// Echo Response
echo = (ICMP_ECHO *)(((UCHAR *)data) + sizeof(ICMP_HEADER));
if (size >= (sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO)))
{
payload = ((UCHAR *)data) + sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO);
payload_size = size - (sizeof(ICMP_HEADER) + sizeof(ICMP_ECHO));
// Rewrite the header
icmp->Checksum = 0;
icmp->Checksum = IpChecksum(icmp, size);
}
}
}
}
}
}
}
icmp->Checksum = 0;
icmp->Checksum = IpChecksum(icmp, p->PayloadSize);
ok = true;
}
else if (p->TypeL4 == L4_FRAGMENT)
{
ok = true;
}
}
}
FreePacket(p);
}
if (ok == false)
{
Free(*data);
*data = NULL;
goto LABEL_RETRY;
}
return ret;
}
// Send internal IP packet (insert into the send queue)
void EthSendIpPacketInnerIpRaw(ETH *e, void *data, UINT size, USHORT protocol)
{
BUF *b;
if (e == NULL || data == NULL || size == 0)
{
return;
}
if (e->RawIpSendQueue->num_item >= 1024)
{
return;
}
b = NewBuf();
WriteBuf(b, e->RawIpYourMacAddr, 6);
WriteBuf(b, e->RawIpMyMacAddr, 6);
WriteBufShort(b, protocol);
WriteBuf(b, data, size);
SeekBufToBegin(b);
InsertQueue(e->RawIpSendQueue, b);
}
// Process the packet internal if necessary
bool EthProcessIpPacketInnerIpRaw(ETH *e, PKT *p)
{
bool ret = false;
if (e == NULL || p == NULL)
{
return false;
}
if (p->TypeL3 == L3_ARPV4)
{
// ARP processing
ARPV4_HEADER *arp = p->L3.ARPv4Header;
if (Endian16(arp->HardwareType) == ARP_HARDWARE_TYPE_ETHERNET &&
Endian16(arp->ProtocolType) == MAC_PROTO_IPV4 &&
arp->HardwareSize == 6 && arp->ProtocolType == 4)
{
if (IPToUINT(&e->MyIP) == arp->TargetIP)
{
if (Endian16(arp->Operation) == ARP_OPERATION_REQUEST)
{
ARPV4_HEADER r;
Zero(&r, sizeof(r));
r.HardwareType = Endian16(ARP_HARDWARE_TYPE_ETHERNET);
r.ProtocolType = Endian16(MAC_PROTO_IPV4);
r.HardwareSize = 6;
r.ProtocolSize = 4;
r.Operation = Endian16(ARP_OPERATION_RESPONSE);
Copy(r.SrcAddress, e->RawIpMyMacAddr, 6);
Copy(r.TargetAddress, arp->SrcAddress, 6);
r.SrcIP = IPToUINT(&e->MyIP);
r.TargetIP = arp->SrcIP;
EthSendIpPacketInnerIpRaw(e, &r, sizeof(ARPV4_HEADER), MAC_PROTO_ARPV4);
}
}
}
}
else if (p->TypeL3 == L3_IPV4 && p->TypeL4 == L4_UDP && p->TypeL7 == L7_DHCPV4)
{
// DHCP processing
DHCPV4_HEADER *dhcp;
UCHAR *data;
UINT size;
UINT dhcp_header_size;
UINT dhcp_data_offset;
UINT tran_id;
UINT magic_cookie = Endian32(DHCP_MAGIC_COOKIE);
bool ok;
DHCP_OPTION_LIST *opt;
dhcp = p->L7.DHCPv4Header;
tran_id = Endian32(dhcp->TransactionId);
// Get the DHCP data and size
dhcp_header_size = sizeof(DHCPV4_HEADER);
dhcp_data_offset = (UINT)(((UCHAR *)p->L7.DHCPv4Header) - ((UCHAR *)p->MacHeader) + dhcp_header_size);
data = ((UCHAR *)dhcp) + dhcp_header_size;
size = p->PacketSize - dhcp_data_offset;
if (dhcp_header_size < 5)
{
// Data size is invalid
return false;
}
// Search for Magic Cookie
ok = false;
while (size >= 5)
{
if (Cmp(data, &magic_cookie, sizeof(magic_cookie)) == 0)
{
// Found
data += 4;
size -= 4;
ok = true;
break;
}
data++;
size--;
}
if (ok == false)
{
// The packet is invalid
return false;
}
// Parse DHCP options list
opt = ParseDhcpOptionList(data, size);
if (opt == NULL)
{
// The packet is invalid
return false;
}
if (dhcp->OpCode == 1 && (opt->Opcode == DHCP_DISCOVER || opt->Opcode == DHCP_REQUEST || opt->Opcode == DHCP_INFORM))
{
// Operate as the server
UINT ip = IPToUINT(&e->YourIP);
if (ip != 0 || opt->Opcode == DHCP_INFORM)
{
// Respond if there is providable IP address
DHCP_OPTION_LIST ret;
LIST *o;
UINT hw_type = 0U;
UINT hw_addr_size = 0U;
UINT new_ip = ip;
IP default_dns;
Zero(&default_dns, sizeof(default_dns));
Zero(&ret, sizeof(ret));
ret.Opcode = (opt->Opcode == DHCP_DISCOVER ? DHCP_OFFER : DHCP_ACK);
ret.ServerAddress = IPToUINT(&e->MyIP);
ret.LeaseTime = 3600;
if (opt->Opcode == DHCP_INFORM)
{
ret.LeaseTime = 0;
}
ret.SubnetMask = SetIP32(255, 255, 255, 252);
if (UnixGetDefaultDns(&default_dns) && IsZeroIp(&default_dns) == false)
{
ret.DnsServer = IPToUINT(&default_dns);
ret.DnsServer2 = SetIP32(8, 8, 8, 8);
}
else
{
ret.DnsServer = SetIP32(8, 8, 8, 8);
ret.DnsServer2 = SetIP32(8, 8, 4, 4);
}
ret.Gateway = IPToUINT(&e->MyIP);
if (opt->Opcode != DHCP_INFORM)
{
char client_mac[MAX_SIZE];
char client_ip[64];
IP ips;
BinToStr(client_mac, sizeof(client_mac), p->MacAddressSrc, 6);
UINTToIP(&ips, ip);
IPToStr(client_ip, sizeof(client_ip), &ips);
Debug("IP_RAW: DHCP %s : %s given %s\n",
ret.Opcode == DHCP_OFFER ? "DHCP_OFFER" : "DHCP_ACK",
client_mac, client_ip);
}
// Build a DHCP option
o = BuildDhcpOption(&ret);
if (o != NULL)
{
BUF *b = BuildDhcpOptionsBuf(o);
if (b != NULL)
{
UINT dest_ip = p->L3.IPv4Header->SrcIP;
UINT blank_size = 128 + 64;
UINT dhcp_packet_size;
UINT magic = Endian32(DHCP_MAGIC_COOKIE);
DHCPV4_HEADER *dhcp;
void *magic_cookie_addr;
void *buffer_addr;
if (dest_ip == 0)
{
dest_ip = 0xffffffff;
}
// Calculate the DHCP packet size
dhcp_packet_size = blank_size + sizeof(DHCPV4_HEADER) + sizeof(magic) + b->Size;
if (dhcp_packet_size < DHCP_MIN_SIZE)
{
// Padding
dhcp_packet_size = DHCP_MIN_SIZE;
}
// Create a header
dhcp = ZeroMalloc(dhcp_packet_size);
dhcp->OpCode = 2;
dhcp->HardwareType = hw_type;
dhcp->HardwareAddressSize = hw_addr_size;
dhcp->Hops = 0;
dhcp->TransactionId = Endian32(tran_id);
dhcp->Seconds = 0;
dhcp->Flags = 0;
dhcp->YourIP = new_ip;
dhcp->ServerIP = IPToUINT(&e->MyIP);
Copy(dhcp->ClientMacAddress, p->MacAddressSrc, 6);
// Calculate the address
magic_cookie_addr = (((UCHAR *)dhcp) + sizeof(DHCPV4_HEADER) + blank_size);
buffer_addr = ((UCHAR *)magic_cookie_addr) + sizeof(magic);
// Magic Cookie
Copy(magic_cookie_addr, &magic, sizeof(magic));
// Buffer
Copy(buffer_addr, b->Buf, b->Size);
if (true)
{
UCHAR *data = ZeroMalloc(sizeof(IPV4_HEADER) + sizeof(UDP_HEADER) + dhcp_packet_size);
IPV4_HEADER *ipv4 = (IPV4_HEADER *)(data);
UDP_HEADER *udp = (UDP_HEADER *)(data + sizeof(IPV4_HEADER));
Copy(data + sizeof(IPV4_HEADER) + sizeof(UDP_HEADER), dhcp, dhcp_packet_size);
IPV4_SET_VERSION(ipv4, 4);
IPV4_SET_HEADER_LEN(ipv4, 5);
ipv4->TotalLength = Endian16(sizeof(IPV4_HEADER) + sizeof(UDP_HEADER) + dhcp_packet_size);
ipv4->TimeToLive = 63;
ipv4->Protocol = IP_PROTO_UDP;
ipv4->SrcIP = IPToUINT(&e->MyIP);
ipv4->DstIP = dest_ip;
ipv4->Checksum = IpChecksum(ipv4, sizeof(IPV4_HEADER));
udp->SrcPort = Endian16(NAT_DHCP_SERVER_PORT);
udp->DstPort = Endian16(NAT_DHCP_CLIENT_PORT);
udp->PacketLength = Endian16(sizeof(UDP_HEADER) + dhcp_packet_size);
udp->Checksum = CalcChecksumForIPv4(ipv4->SrcIP, ipv4->DstIP, IP_PROTO_UDP,
dhcp, dhcp_packet_size, 0);
if (udp->Checksum == 0)
{
udp->Checksum = 0xffff;
}
EthSendIpPacketInnerIpRaw(e, data, sizeof(IPV4_HEADER) + sizeof(UDP_HEADER) + dhcp_packet_size, MAC_PROTO_IPV4);
Free(data);
}
// Release the memory
Free(dhcp);
FreeBuf(b);
}
FreeDhcpOptions(o);
}
}
}
Free(opt);
}
return ret;
}
// Send an IP raw packet
void EthPutPacketLinuxIpRaw(ETH *e, void *data, UINT size)
{
PKT *p;
SOCK *s = NULL;
// Validate arguments
if (e == NULL || data == NULL)
{
return;
}
if (size < 14 || size > MAX_PACKET_SIZE || e->RawIp_HasError)
{
Free(data);
return;
}
p = ParsePacket(data, size);
if (p == NULL)
{
Free(data);
return;
}
if (p->BroadcastPacket || Cmp(p->MacAddressDest, e->RawIpMyMacAddr, 6) == 0)
{
if (IsMacUnicast(p->MacAddressSrc))
{
Copy(e->RawIpYourMacAddr, p->MacAddressSrc, 6);
}
}
if (IsZero(e->RawIpYourMacAddr, 6) || IsMacUnicast(p->MacAddressSrc) == false ||
(p->BroadcastPacket == false && Cmp(p->MacAddressDest, e->RawIpMyMacAddr, 6) != 0))
{
Free(data);
FreePacket(p);
return;
}
if (p->TypeL3 == L3_IPV4)
{
if (p->TypeL4 == L4_TCP)
{
if (IsZeroIP(&e->MyPhysicalIP) == false)
{
s = e->RawTcp;
}
}
else if (p->TypeL4 == L4_UDP)
{
if (EthProcessIpPacketInnerIpRaw(e, p) == false)
{
s = e->RawUdp;
}
}
else if (p->TypeL4 == L4_ICMPV4)
{
if (IsZeroIP(&e->MyPhysicalIP) == false)
{
s = e->RawIcmp;
}
}
else if (p->TypeL4 == L4_FRAGMENT)
{
if (IsZeroIP(&e->MyPhysicalIP) == false)
{
s = e->RawIcmp;
}
}
}
else if (p->TypeL3 == L3_ARPV4)
{
EthProcessIpPacketInnerIpRaw(e, p);
}
if (s != NULL && p->L3.IPv4Header->DstIP != 0xffffffff && p->BroadcastPacket == false &&
p->L3.IPv4Header->SrcIP == IPToUINT(&e->YourIP))
{
UCHAR *send_data = p->IPv4PayloadData;
UCHAR *head = p->PacketData;
UINT remove_header_size = (UINT)(send_data - head);
if (p->PacketSize > remove_header_size)
{
IP dest;
UINT send_data_size = p->PacketSize - remove_header_size;
// checksum
if (p->TypeL4 == L4_UDP)
{
p->L4.UDPHeader->Checksum = 0;
}
else if (p->TypeL4 == L4_TCP)
{
p->L4.TCPHeader->Checksum = 0;
p->L4.TCPHeader->Checksum = CalcChecksumForIPv4(IPToUINT(&e->MyPhysicalIP),
p->L3.IPv4Header->DstIP, IP_PROTO_TCP,
p->L4.TCPHeader, p->IPv4PayloadSize, 0);
}
UINTToIP(&dest, p->L3.IPv4Header->DstIP);
if (s->RawIP_HeaderIncludeFlag == false)
{
SendTo(s, &dest, 0, send_data, send_data_size);
}
else
{
IPV4_HEADER *ip = p->L3.IPv4Header;
ip->SrcIP = IPToUINT(&e->MyPhysicalIP);
ip->Checksum = 0;
ip->Checksum = IpChecksum(ip, IPV4_GET_HEADER_LEN(ip) * 4);
SendTo(s, &dest, 0, ip, ((UCHAR *)p->PacketData - (UCHAR *)ip) + p->PacketSize);
}
}
}
FreePacket(p);
Free(data);
}
#endif