// SoftEther VPN Source Code - Developer Edition Master Branch // Mayaqua Kernel // Object.c // Object management code #include #include #include #include #include #include #include #include #include // Thread to try to lock void CheckDeadLockThread(THREAD *t, void *param) { DEADCHECK *c = (DEADCHECK *)param; if (t == NULL || c == NULL) { return; } NoticeThreadInit(t); Lock(c->Lock); Unlock(c->Lock); c->Unlocked = true; } // Deadlock Detection void CheckDeadLock(LOCK *lock, UINT timeout, char *name) { DEADCHECK c; THREAD *t; char msg[MAX_PATH]; if (lock == NULL) { return; } if (name == NULL) { name = "Unknown"; } Format(msg, sizeof(msg), "error: CheckDeadLock() Failed: %s\n", name); Zero(&c, sizeof(c)); c.Lock = lock; c.Timeout = timeout; c.Unlocked = false; t = NewThread(CheckDeadLockThread, &c); WaitThreadInit(t); if (WaitThread(t, timeout) == false) { if (c.Unlocked == false) { // Deadlock occured AbortExitEx(msg); } else { WaitThread(t, INFINITE); } } ReleaseThread(t); } // Create a lock object LOCK *NewLockMain() { LOCK *lock; UINT retry = 0; while (true) { if ((retry++) > OBJECT_ALLOC__MAX_RETRY) { AbortExitEx("error: OSNewLock() failed.\n\n"); } lock = OSNewLock(); if (lock != NULL) { break; } SleepThread(OBJECT_ALLOC_FAIL_SLEEP_TIME); } return lock; } LOCK *NewLock() { LOCK *lock = NewLockMain(); // KS KS_INC(KS_NEWLOCK_COUNT); KS_INC(KS_CURRENT_LOCK_COUNT); return lock; } // Delete the lock object void DeleteLock(LOCK *lock) { // Validate arguments if (lock == NULL) { return; } // KS KS_INC(KS_DELETELOCK_COUNT); KS_DEC(KS_CURRENT_LOCK_COUNT); OSDeleteLock(lock); } // Lock bool LockInner(LOCK *lock) { // Validate arguments if (lock == NULL) { return false; } // KS KS_INC(KS_LOCK_COUNT); KS_INC(KS_CURRENT_LOCKED_COUNT); return OSLock(lock); } // Unlock void UnlockInner(LOCK *lock) { // Validate arguments if (lock == NULL) { return; } // KS KS_INC(KS_UNLOCK_COUNT); KS_DEC(KS_CURRENT_LOCKED_COUNT); OSUnlock(lock); } // Creating a counter COUNTER *NewCounter() { COUNTER *c; // Memory allocation c = Malloc(sizeof(COUNTER)); // Initialization c->Ready = true; c->c = 0; // Lock created c->lock = NewLock(); // KS KS_INC(KS_NEW_COUNTER_COUNT); return c; } // Delete the counter void DeleteCounter(COUNTER *c) { // Validate arguments if (c == NULL) { return; } // KS KS_INC(KS_DELETE_COUNTER_COUNT); KS_SUB(KS_CURRENT_COUNT, c->c); DeleteLock(c->lock); Free(c); } // Get the count value UINT Count(COUNTER *c) { UINT ret; // Validate arguments if (c == NULL) { return 0; } if (c->Ready == false) { return 0; } Lock(c->lock); { ret = c->c; } Unlock(c->lock); return ret; } // Increment UINT Inc(COUNTER *c) { UINT ret; // Validate arguments if (c == NULL) { return 0; } if (c->Ready == false) { return 0; } Lock(c->lock); { c->c++; ret = c->c; } Unlock(c->lock); // KS KS_INC(KS_INC_COUNT); KS_INC(KS_CURRENT_COUNT); return ret; } // Decrement UINT Dec(COUNTER *c) { UINT ret; // Validate arguments if (c == NULL) { return 0; } if (c->Ready == false) { return 0; } Lock(c->lock); { if (c->c != 0) { c->c--; ret = c->c; } else { ret = 0; } } Unlock(c->lock); // KS KS_INC(KS_DEC_COUNT); KS_DEC(KS_CURRENT_COUNT); return ret; } // Release of the reference counter UINT Release(REF *ref) { UINT c; // Validate arguments if (ref == NULL) { return 0; } // KS KS_INC(KS_RELEASE_COUNT); KS_DEC(KS_CURRENT_REFED_COUNT); c = Dec(ref->c); if (c == 0) { // KS KS_DEC(KS_CURRENT_REF_COUNT); KS_INC(KS_FREEREF_COUNT); DeleteCounter(ref->c); ref->c = 0; Free(ref); } return c; } // Increase of the reference counter UINT AddRef(REF *ref) { UINT c; // Validate arguments if (ref == NULL) { return 0; } c = Inc(ref->c); // KS KS_INC(KS_ADDREF_COUNT); KS_INC(KS_CURRENT_REFED_COUNT); return c; } // Create a reference counter REF *NewRef() { REF *ref; // Memory allocation ref = Malloc(sizeof(REF)); // Create a Counter ref->c = NewCounter(); // Increment only once Inc(ref->c); // KS KS_INC(KS_NEWREF_COUNT); KS_INC(KS_CURRENT_REF_COUNT); KS_INC(KS_ADDREF_COUNT); KS_INC(KS_CURRENT_REFED_COUNT); return ref; } // Creating an event object EVENT *NewEvent() { // Memory allocation EVENT *e = Malloc(sizeof(EVENT)); // Reference counter e->ref = NewRef(); // Event initialization OSInitEvent(e); // KS KS_INC(KS_NEWEVENT_COUNT); return e; } // Release of the event void ReleaseEvent(EVENT *e) { // Validate arguments if (e == NULL) { return; } if (Release(e->ref) == 0) { CleanupEvent(e); } } // Delete the event void CleanupEvent(EVENT *e) { // Validate arguments if (e == NULL) { return; } // Release event OSFreeEvent(e); // Memory release Free(e); // KS KS_INC(KS_FREEEVENT_COUNT); } // Set event void Set(EVENT *e) { // Validate arguments if (e == NULL) { return; } OSSetEvent(e); } // Wait for event bool Wait(EVENT *e, UINT timeout) { // Validate arguments if (e == NULL) { return false; } // KS KS_INC(KS_WAIT_COUNT); return OSWaitEvent(e, timeout); } // Wait for a event until the cancel flag becomes true bool WaitEx(EVENT *e, UINT timeout, volatile bool *cancel) { bool dummy_bool = false; UINT64 start, giveup; // Validate arguments if (cancel == NULL) { cancel = &dummy_bool; } start = Tick64(); if (timeout == INFINITE || timeout == 0x7FFFFFFF) { giveup = 0; } else { giveup = start + (UINT64)timeout; } while (true) { UINT64 now = Tick64(); UINT interval_to_giveup = (UINT)(giveup - now); if (giveup == 0) { interval_to_giveup = INFINITE; } else { if (now >= giveup) { // Time-out occurs return false; } } interval_to_giveup = MIN(interval_to_giveup, 25); if (*cancel) { // Cancel flag is set to true. Time-out occurs return false; } if (e != NULL) { if (Wait(e, interval_to_giveup)) { // Event is set return true; } } else { SleepThread(interval_to_giveup); } } }