1
0
mirror of https://github.com/SoftEtherVPN/SoftEtherVPN.git synced 2024-09-20 10:40:39 +03:00
SoftEtherVPN/src/Cedar/BridgeUnix.c

2027 lines
41 KiB
C
Raw Normal View History

2014-01-04 17:00:08 +04:00
// SoftEther VPN Source Code
// Cedar Communication Module
//
// SoftEther VPN Server, Client and Bridge are free software under GPLv2.
//
// Copyright (c) 2012-2014 Daiyuu Nobori.
// Copyright (c) 2012-2014 SoftEther VPN Project, University of Tsukuba, Japan.
// Copyright (c) 2012-2014 SoftEther Corporation.
//
// All Rights Reserved.
//
// http://www.softether.org/
//
// Author: Daiyuu Nobori
// Comments: Tetsuo Sugiyama, Ph.D.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// version 2 as published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License version 2
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// THE LICENSE AGREEMENT IS ATTACHED ON THE SOURCE-CODE PACKAGE
// AS "LICENSE.TXT" FILE. READ THE TEXT FILE IN ADVANCE TO USE THE SOFTWARE.
//
//
// THIS SOFTWARE IS DEVELOPED IN JAPAN, AND DISTRIBUTED FROM JAPAN,
// UNDER JAPANESE LAWS. YOU MUST AGREE IN ADVANCE TO USE, COPY, MODIFY,
// MERGE, PUBLISH, DISTRIBUTE, SUBLICENSE, AND/OR SELL COPIES OF THIS
// SOFTWARE, THAT ANY JURIDICAL DISPUTES WHICH ARE CONCERNED TO THIS
// SOFTWARE OR ITS CONTENTS, AGAINST US (SOFTETHER PROJECT, SOFTETHER
// CORPORATION, DAIYUU NOBORI OR OTHER SUPPLIERS), OR ANY JURIDICAL
// DISPUTES AGAINST US WHICH ARE CAUSED BY ANY KIND OF USING, COPYING,
// MODIFYING, MERGING, PUBLISHING, DISTRIBUTING, SUBLICENSING, AND/OR
// SELLING COPIES OF THIS SOFTWARE SHALL BE REGARDED AS BE CONSTRUED AND
// CONTROLLED BY JAPANESE LAWS, AND YOU MUST FURTHER CONSENT TO
// EXCLUSIVE JURISDICTION AND VENUE IN THE COURTS SITTING IN TOKYO,
// JAPAN. YOU MUST WAIVE ALL DEFENSES OF LACK OF PERSONAL JURISDICTION
// AND FORUM NON CONVENIENS. PROCESS MAY BE SERVED ON EITHER PARTY IN
// THE MANNER AUTHORIZED BY APPLICABLE LAW OR COURT RULE.
//
2014-07-11 21:06:20 +04:00
// USE ONLY IN JAPAN. DO NOT USE THIS SOFTWARE IN ANOTHER COUNTRY UNLESS
// YOU HAVE A CONFIRMATION THAT THIS SOFTWARE DOES NOT VIOLATE ANY
// CRIMINAL LAWS OR CIVIL RIGHTS IN THAT PARTICULAR COUNTRY. USING THIS
// SOFTWARE IN OTHER COUNTRIES IS COMPLETELY AT YOUR OWN RISK. THE
// SOFTETHER VPN PROJECT HAS DEVELOPED AND DISTRIBUTED THIS SOFTWARE TO
// COMPLY ONLY WITH THE JAPANESE LAWS AND EXISTING CIVIL RIGHTS INCLUDING
// PATENTS WHICH ARE SUBJECTS APPLY IN JAPAN. OTHER COUNTRIES' LAWS OR
// CIVIL RIGHTS ARE NONE OF OUR CONCERNS NOR RESPONSIBILITIES. WE HAVE
// NEVER INVESTIGATED ANY CRIMINAL REGULATIONS, CIVIL LAWS OR
// INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENTS IN ANY OF OTHER 200+
// COUNTRIES AND TERRITORIES. BY NATURE, THERE ARE 200+ REGIONS IN THE
// WORLD, WITH DIFFERENT LAWS. IT IS IMPOSSIBLE TO VERIFY EVERY
// COUNTRIES' LAWS, REGULATIONS AND CIVIL RIGHTS TO MAKE THE SOFTWARE
// COMPLY WITH ALL COUNTRIES' LAWS BY THE PROJECT. EVEN IF YOU WILL BE
// SUED BY A PRIVATE ENTITY OR BE DAMAGED BY A PUBLIC SERVANT IN YOUR
// COUNTRY, THE DEVELOPERS OF THIS SOFTWARE WILL NEVER BE LIABLE TO
// RECOVER OR COMPENSATE SUCH DAMAGES, CRIMINAL OR CIVIL
// RESPONSIBILITIES. NOTE THAT THIS LINE IS NOT LICENSE RESTRICTION BUT
// JUST A STATEMENT FOR WARNING AND DISCLAIMER.
2014-01-04 17:00:08 +04:00
//
//
2014-01-15 13:01:42 +04:00
// SOURCE CODE CONTRIBUTION
// ------------------------
//
// Your contribution to SoftEther VPN Project is much appreciated.
// Please send patches to us through GitHub.
// Read the SoftEther VPN Patch Acceptance Policy in advance:
// http://www.softether.org/5-download/src/9.patch
//
//
2014-01-04 17:00:08 +04:00
// DEAR SECURITY EXPERTS
// ---------------------
//
// If you find a bug or a security vulnerability please kindly inform us
// about the problem immediately so that we can fix the security problem
// to protect a lot of users around the world as soon as possible.
//
// Our e-mail address for security reports is:
// softether-vpn-security [at] softether.org
//
// Please note that the above e-mail address is not a technical support
// inquiry address. If you need technical assistance, please visit
// http://www.softether.org/ and ask your question on the users forum.
//
// Thank you for your cooperation.
2014-03-20 00:45:05 +04:00
//
//
// NO MEMORY OR RESOURCE LEAKS
// ---------------------------
//
// The memory-leaks and resource-leaks verification under the stress
// test has been passed before release this source code.
2014-01-04 17:00:08 +04:00
// BridgeUnix.c
// Ethernet Bridge Program (for UNIX)
//#define BRIDGE_C
//#define UNIX_LINUX
#include <GlobalConst.h>
#ifdef BRIDGE_C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <stdarg.h>
#include <time.h>
#include <errno.h>
#include <Mayaqua/Mayaqua.h>
#include <Cedar/Cedar.h>
#ifdef UNIX_SOLARIS
#include <sys/sockio.h>
#endif
#ifdef BRIDGE_PCAP
#include <pcap.h>
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#include <sys/ioctl.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <ifaddrs.h>
#endif // BRIDGE_BPF
2014-10-03 19:09:23 +04:00
#ifdef UNIX_LINUX
struct my_tpacket_auxdata
{
UINT tp_status;
UINT tp_len;
UINT tp_snaplen;
USHORT tp_mac;
USHORT tp_net;
USHORT tp_vlan_tci;
USHORT tp_vlan_tpid;
};
#define MY_TP_STATUS_VLAN_VALID (1 << 4)
#define MY_TP_STATUS_VLAN_TPID_VALID (1 << 6)
#define MY_PACKET_AUXDATA 8
#endif // UNIX_LINUX
2015-01-30 16:30:34 +03:00
static LIST *eth_offload_list = NULL;
2014-01-04 17:00:08 +04:00
// Initialize
void InitEth()
{
2015-01-30 16:30:34 +03:00
eth_offload_list = NewList(NULL);
2014-01-04 17:00:08 +04:00
}
// Free
void FreeEth()
{
2015-01-30 16:30:34 +03:00
if (eth_offload_list != NULL)
{
FreeStrList(eth_offload_list);
eth_offload_list = NULL;
}
2014-01-04 17:00:08 +04:00
}
// Check whether interface description string of Ethernet device can be retrieved in this system
bool EthIsInterfaceDescriptionSupportedUnix()
{
bool ret = false;
DIRLIST *d = EnumDir("/etc/sysconfig/networking/devices/");
if (d == NULL)
{
return false;
}
if (d->NumFiles >= 1)
{
ret = true;
}
FreeDir(d);
return ret;
}
// Get interface description string
bool EthGetInterfaceDescriptionUnix(char *name, char *str, UINT size)
{
char tmp[MAX_SIZE];
bool ret = false;
BUF *b;
// Validate arguments
if (name == NULL || str == NULL)
{
return false;
}
StrCpy(str, size, name);
Format(tmp, sizeof(tmp), "/etc/sysconfig/networking/devices/ifcfg-%s", name);
b = ReadDump(tmp);
if (b != NULL)
{
char *line = CfgReadNextLine(b);
if (IsEmptyStr(line) == false)
{
if (StartWith(line, "#"))
{
char tmp[MAX_SIZE];
StrCpy(tmp, sizeof(tmp), line + 1);
Trim(tmp);
tmp[60] = 0;
StrCpy(str, size, tmp);
ret = true;
}
}
Free(line);
FreeBuf(b);
}
return ret;
}
// Open raw socket
int UnixEthOpenRawSocket()
{
#ifdef UNIX_LINUX
int s;
s = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (s < 0)
{
return INVALID_SOCKET;
}
else
{
return s;
}
#else // UNIX_LINUX
return -1;
#endif // UNIX_LINUX
}
// Is Ethernet device control supported?
bool IsEthSupported()
{
bool ret = false;
#if defined(UNIX_LINUX)
ret = IsEthSupportedLinux();
#elif defined(UNIX_SOLARIS)
ret = IsEthSupportedSolaris();
#elif defined(BRIDGE_PCAP)
ret = true;
#elif defined(BRIDGE_BPF)
ret = true;
#endif
return ret;
}
#ifdef UNIX_LINUX
bool IsEthSupportedLinux()
{
int s;
// Try to open a raw socket
s = UnixEthOpenRawSocket();
if (s == INVALID_SOCKET)
{
// fail
return false;
}
// success
closesocket(s);
return true;
}
#endif // UNIX_LINUX
#ifdef UNIX_SOLARIS
bool IsEthSupportedSolaris()
{
return true;
}
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
// Get Ethernet device list on Solaris
TOKEN_LIST *GetEthListSolaris()
{
TOKEN_LIST *t;
int i, s;
LIST *o;
o = NewListFast(CompareStr);
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s != INVALID_SOCKET)
{
struct lifnum lifn;
lifn.lifn_family = AF_INET;
lifn.lifn_flags = 0;
if (ioctl(s, SIOCGLIFNUM, (char *)&lifn) >= 0)
{
struct lifconf lifc;
struct lifreq *buf;
UINT numifs;
UINT bufsize;
numifs = lifn.lifn_count;
Debug("NumIFs:%d\n",numifs);
bufsize = numifs * sizeof(struct lifreq);
buf = Malloc(bufsize);
lifc.lifc_family = AF_INET;
lifc.lifc_flags = 0;
lifc.lifc_len = bufsize;
lifc.lifc_buf = (char*) buf;
if (ioctl(s, SIOCGLIFCONF, (char *)&lifc) >= 0)
{
for (i = 0; i<numifs; i++)
{
if(StartWith(buf[i].lifr_name, "lo") == false){
Add(o, CopyStr(buf[i].lifr_name));
}
}
}
Free(buf);
}
closesocket(s);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0;i < LIST_NUM(o);i++)
{
char *name = LIST_DATA(o, i);
t->Token[i] = name;
}
ReleaseList(o);
return t;
}
#endif // UNIX_SOLARIS
#ifdef UNIX_LINUX
// Get Ethernet device list on Linux
TOKEN_LIST *GetEthListLinux()
{
struct ifreq ifr;
TOKEN_LIST *t;
UINT i, n;
int s;
LIST *o;
char name[MAX_SIZE];
o = NewListFast(CompareStr);
s = UnixEthOpenRawSocket();
if (s != INVALID_SOCKET)
{
n = 0;
for (i = 0;;i++)
{
Zero(&ifr, sizeof(ifr));
ifr.ifr_ifindex = i;
if (ioctl(s, SIOCGIFNAME, &ifr) >= 0)
{
n = 0;
StrCpy(name, sizeof(name), ifr.ifr_name);
Zero(&ifr, sizeof(ifr));
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), name);
if (ioctl(s, SIOCGIFHWADDR, &ifr) >= 0)
{
UINT type = ifr.ifr_hwaddr.sa_family;
if (type == 1 || type == 2 || type == 6 || type == 800 || type == 801)
{
if (IsInListStr(o, name) == false)
{
if (StartWith(name, "tap_") == false)
{
Add(o, CopyStr(name));
}
}
}
}
}
else
{
n++;
if (n >= 64)
{
break;
}
}
}
closesocket(s);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0;i < LIST_NUM(o);i++)
{
char *name = LIST_DATA(o, i);
t->Token[i] = name;
}
ReleaseList(o);
return t;
}
#endif // UNIX_LINUX
#ifdef BRIDGE_PCAP
// Ethernet device list by Pcap API
TOKEN_LIST *GetEthListPcap()
{
pcap_if_t *alldevs;
char errbuf[PCAP_ERRBUF_SIZE];
LIST *o;
TOKEN_LIST *t;
int i;
o = NewListFast(CompareStr);
if( pcap_findalldevs(&alldevs,errbuf) != -1)
{
pcap_if_t *dev = alldevs;
while(dev != NULL)
{
pcap_t *p;
// Device type will be unknown until open the device?
p = pcap_open_live(dev->name, 0, false, 0, errbuf);
if(p != NULL)
{
int datalink = pcap_datalink(p);
// Debug("type:%s\n",pcap_datalink_val_to_name(datalink));
pcap_close(p);
if(datalink == DLT_EN10MB){
// Enumerate only Ethernet type device
Add(o, CopyStr(dev->name));
}
}
dev = dev->next;
}
pcap_freealldevs(alldevs);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0;i < LIST_NUM(o);i++)
{
t->Token[i] = LIST_DATA(o, i);
}
ReleaseList(o);
return t;
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
// Ethernet device list by BPF API
TOKEN_LIST *GetEthListBpf()
{
struct ifaddrs *ifadrs;
struct sockaddr_dl *sockadr;
LIST *o;
TOKEN_LIST *t;
int i;
o = NewListFast(CompareStr);
// Enumerate network devices
if(getifaddrs( &ifadrs ) == 0)
{
struct ifaddrs *ifadr = ifadrs;
while(ifadr)
{
sockadr = (struct sockaddr_dl*)ifadr->ifa_addr;
if(sockadr->sdl_family == AF_LINK && sockadr->sdl_type == IFT_ETHER)
{
// Is this Ethernet device?
if(!IsInListStr(o,ifadr->ifa_name))
{
// Ignore the foregoing device (for device which have multiple MAC address)
Add(o, CopyStr(ifadr->ifa_name));
}
}
ifadr = ifadr -> ifa_next;
}
freeifaddrs(ifadrs);
}
Sort(o);
t = ZeroMalloc(sizeof(TOKEN_LIST));
t->NumTokens = LIST_NUM(o);
t->Token = ZeroMalloc(sizeof(char *) * t->NumTokens);
for (i = 0;i < LIST_NUM(o);i++)
{
t->Token[i] = LIST_DATA(o, i);
}
ReleaseList(o);
return t;
}
#endif // BRIDGE_BPF
// Enumerate Ethernet devices
TOKEN_LIST *GetEthList()
{
TOKEN_LIST *t = NULL;
#if defined(UNIX_LINUX)
t = GetEthListLinux();
#elif defined(UNIX_SOLARIS)
t = GetEthListSolaris();
#elif defined(BRIDGE_PCAP)
t = GetEthListPcap();
#elif defined(BRIDGE_BPF)
t = GetEthListBpf();
#endif
return t;
}
#ifdef UNIX_LINUX
// Open Ethernet device (Linux)
ETH *OpenEthLinux(char *name, bool local, bool tapmode, char *tapaddr)
{
ETH *e;
struct ifreq ifr;
struct sockaddr_ll addr;
int s;
int index;
2014-10-03 19:09:23 +04:00
bool aux_ok = false;
2014-01-04 17:00:08 +04:00
CANCEL *c;
// Validate arguments
if (name == NULL)
{
return NULL;
}
if (tapmode)
{
#ifndef NO_VLAN
// In tap mode
VLAN *v = NewTap(name, tapaddr);
if (v == NULL)
{
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->Cancel = VLanGetCancel(v);
e->IfIndex = 0;
e->Socket = INVALID_SOCKET;
e->Tap = v;
return e;
#else // NO_VLAN
return NULL;
#endif // NO_VLAN
}
s = UnixEthOpenRawSocket();
if (s == INVALID_SOCKET)
{
return NULL;
}
Zero(&ifr, sizeof(ifr));
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), name);
if (ioctl(s, SIOCGIFINDEX, &ifr) < 0)
{
closesocket(s);
return NULL;
}
index = ifr.ifr_ifindex;
Zero(&addr, sizeof(addr));
addr.sll_family = PF_PACKET;
addr.sll_protocol = htons(ETH_P_ALL);
addr.sll_ifindex = index;
if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0)
{
closesocket(s);
return NULL;
}
if (local == false)
{
// Enable promiscious mode
Zero(&ifr, sizeof(ifr));
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), name);
if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0)
{
// Failed
closesocket(s);
return NULL;
}
ifr.ifr_flags |= IFF_PROMISC;
if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0)
{
// Failed
closesocket(s);
return NULL;
}
}
2014-10-03 19:09:23 +04:00
if (true)
{
int val = 1;
int ss_ret = setsockopt(s, SOL_PACKET, MY_PACKET_AUXDATA, &val, sizeof(val));
if (ss_ret < 0)
{
Debug("eth(%s): setsockopt: PACKET_AUXDATA failed.\n", name);
}
else
{
Debug("eth(%s): setsockopt: PACKET_AUXDATA ok.\n", name);
aux_ok = true;
}
}
2014-01-04 17:00:08 +04:00
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->IfIndex = index;
e->Socket = s;
2014-10-03 19:09:23 +04:00
e->Linux_IsAuxDataSupported = aux_ok;
2014-01-04 17:00:08 +04:00
c = NewCancel();
UnixDeletePipe(c->pipe_read, c->pipe_write);
c->pipe_read = c->pipe_write = -1;
UnixSetSocketNonBlockingMode(s, true);
c->SpecialFlag = true;
c->pipe_read = s;
e->Cancel = c;
// Get MTU
e->InitialMtu = EthGetMtu(e);
if (tapmode == false)
{
2014-10-03 19:09:23 +04:00
if (GetGlobalServerFlag(GSF_LOCALBRIDGE_NO_DISABLE_OFFLOAD) == false)
{
2015-01-30 16:30:34 +03:00
bool b = false;
LockList(eth_offload_list);
{
if (IsInListStr(eth_offload_list, name) == false)
{
b = true;
Add(eth_offload_list, CopyStr(name));
}
}
UnlockList(eth_offload_list);
if (b)
{
// Disable hardware offloading
UnixDisableInterfaceOffload(name);
}
2014-10-03 19:09:23 +04:00
}
2014-01-04 17:00:08 +04:00
}
return e;
}
#endif // UNIX_LINUX
// Get the MTU value
UINT EthGetMtu(ETH *e)
{
#if defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
UINT ret = 0;
#ifdef UNIX_SOLARIS
struct lifreq ifr;
#else // UNIX_SOLARIS
struct ifreq ifr;
#endif // UNIX_SOLARIS
int s;
// Validate arguments
if (e == NULL || e->Tap != NULL)
{
return 0;
}
if (e->CurrentMtu != 0)
{
return e->CurrentMtu;
}
#if defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->SocketBsdIf;
#else // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->Socket;
#endif // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
Zero(&ifr, sizeof(ifr));
#ifdef UNIX_SOLARIS
StrCpy(ifr.lifr_name, sizeof(ifr.lifr_name), e->Name);
#else // UNIX_SOLARIS
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), e->Name);
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
if (ioctl(s, SIOCGLIFMTU, &ifr) < 0)
{
// failed
return 0;
}
#else // UNIX_SOLARIS
if (ioctl(s, SIOCGIFMTU, &ifr) < 0)
{
// failed
return 0;
}
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
ret = ifr.lifr_mtu + 14;
#else // UNIX_SOLARIS
ret = ifr.ifr_mtu + 14;
#endif // UNIX_SOLARIS
e->CurrentMtu = ret;
Debug("%s: GetMtu: %u\n", e->Name, ret);
return ret;
#else // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
return 0;
#endif // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
}
// Set the MTU value
bool EthSetMtu(ETH *e, UINT mtu)
{
#if defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
UINT ret = 0;
#ifdef UNIX_SOLARIS
struct lifreq ifr;
#else // UNIX_SOLARIS
struct ifreq ifr;
#endif // UNIX_SOLARIS
int s;
// Validate arguments
if (e == NULL || e->Tap != NULL || (mtu > 1 && mtu < 1514))
{
return false;
}
if (mtu == 0 && e->InitialMtu == 0)
{
return false;
}
if (mtu == 0)
{
// Restore initial MTU value when parameter mtu == 0
mtu = e->InitialMtu;
}
#if defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->SocketBsdIf;
#else // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
s = e->Socket;
#endif // defined(UNIX_BSD) || defined(UNIX_SOLARIS)
if (e->CurrentMtu == mtu)
{
// No need to change
return true;
}
Zero(&ifr, sizeof(ifr));
#ifdef UNIX_SOLARIS
StrCpy(ifr.lifr_name, sizeof(ifr.lifr_name), e->Name);
ifr.lifr_mtu = mtu - 14;
#else // UNIX_SOLARIS
StrCpy(ifr.ifr_name, sizeof(ifr.ifr_name), e->Name);
ifr.ifr_mtu = mtu - 14;
#endif // UNIX_SOLARIS
#ifdef UNIX_SOLARIS
if (ioctl(s, SIOCSLIFMTU, &ifr) < 0)
{
// Failed
return false;
}
#else // UNIX_SOLARIS
if (ioctl(s, SIOCSIFMTU, &ifr) < 0)
{
// Failed
return false;
}
#endif // UNIX_SOLARIS
e->CurrentMtu = mtu;
Debug("%s: SetMtu: %u\n", e->Name, mtu);
return true;
#else // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
return false;
#endif // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
}
// Is changing MTU supported?
bool EthIsChangeMtuSupported(ETH *e)
{
#if defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
// Validate arguments
if (e == NULL || e->Tap != NULL)
{
return false;
}
return true;
#else // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
return false;
#endif // defined(UNIX_LINUX) || defined(UNIX_BSD) || defined(UNIX_SOLARIS)
}
#ifdef UNIX_SOLARIS
// Open Ethernet adapter (Solaris)
ETH *OpenEthSolaris(char *name, bool local, bool tapmode, char *tapaddr)
{
char devname[MAX_SIZE];
UINT devid;
int fd;
ETH *e;
CANCEL *c;
struct strioctl sioc;
// Validate arguments
if (name == NULL || tapmode != false)
{
return NULL;
}
// Parse device name
if (ParseUnixEthDeviceName(devname, sizeof(devname), &devid, name) == false)
{
return NULL;
}
// Open the device
fd = open(devname, O_RDWR);
if (fd == -1)
{
// Failed
return NULL;
}
// Attach to the device
if (DlipAttatchRequest(fd, devid) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Bind to SAP
if (DlipBindRequest(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Set to ignore SAP and promiscuous mode
if (DlipPromiscuous(fd, DL_PROMISC_SAP) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Set to the mode to receive self sending packet
if (DlipPromiscuous(fd, DL_PROMISC_PHYS) == false)
{
// Failed
close(fd);
return NULL;
}
// Verify ACK message
if (DlipReceiveAck(fd) == false)
{
// Failed
close(fd);
return NULL;
}
// Set to raw mode
sioc.ic_cmd = DLIOCRAW;
sioc.ic_timout = -1;
sioc.ic_len = 0;
sioc.ic_dp = NULL;
if (ioctl(fd, I_STR, &sioc) < 0)
{
// Failed
close(fd);
return NULL;
}
if (ioctl(fd, I_FLUSH, FLUSHR) < 0)
{
// Failed
close(fd);
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
c = NewCancel();
UnixDeletePipe(c->pipe_read, c->pipe_write);
c->pipe_read = c->pipe_write = -1;
c->SpecialFlag = true;
c->pipe_read = fd;
e->Cancel = c;
e->IfIndex = -1;
e->Socket = fd;
UnixSetSocketNonBlockingMode(fd, true);
// Get control interface
e->SocketBsdIf = socket(AF_INET, SOCK_DGRAM, 0);
// Get MTU value
e->InitialMtu = EthGetMtu(e);
return e;
}
// Set to promiscuous mode
bool DlipPromiscuous(int fd, UINT level)
{
dl_promiscon_req_t req;
struct strbuf ctl;
int flags;
// Validate arguments
if (fd == -1)
{
return false;
}
Zero(&req, sizeof(req));
req.dl_primitive = DL_PROMISCON_REQ;
req.dl_level = level;
Zero(&ctl, sizeof(ctl));
ctl.maxlen = 0;
ctl.len = sizeof(req);
ctl.buf = (char *)&req;
flags = 0;
if (putmsg(fd, &ctl, NULL, flags) < 0)
{
return false;
}
return true;
}
// Bind to a SAP
bool DlipBindRequest(int fd)
{
dl_bind_req_t req;
struct strbuf ctl;
if (fd == -1)
{
return false;
}
Zero(&req, sizeof(req));
req.dl_primitive = DL_BIND_REQ;
req.dl_service_mode = DL_CLDLS;
req.dl_sap = 0;
Zero(&ctl, sizeof(ctl));
ctl.maxlen = 0;
ctl.len = sizeof(req);
ctl.buf = (char *)&req;
if (putmsg(fd, &ctl, NULL, 0) < 0)
{
return false;
}
return true;
}
// Attach to the device
bool DlipAttatchRequest(int fd, UINT devid)
{
dl_attach_req_t req;
struct strbuf ctl;
int flags;
// Validate arguments
if (fd == -1)
{
return false;
}
Zero(&req, sizeof(req));
req.dl_primitive = DL_ATTACH_REQ;
req.dl_ppa = devid;
Zero(&ctl, sizeof(ctl));
ctl.maxlen = 0;
ctl.len = sizeof(req);
ctl.buf = (char *)&req;
flags = 0;
if (putmsg(fd, &ctl, NULL, flags) < 0)
{
return false;
}
return true;
}
// Verify the ACK message
bool DlipReceiveAck(int fd)
{
union DL_primitives *dlp;
struct strbuf ctl;
int flags = 0;
char *buf;
// Validate arguments
if (fd == -1)
{
return false;
}
buf = MallocFast(SOLARIS_MAXDLBUF);
Zero(&ctl, sizeof(ctl));
ctl.maxlen = SOLARIS_MAXDLBUF;
ctl.len = 0;
ctl.buf = buf;
if (getmsg(fd, &ctl, NULL, &flags) < 0)
{
return false;
}
dlp = (union DL_primitives *)ctl.buf;
if (dlp->dl_primitive != (UINT)DL_OK_ACK && dlp->dl_primitive != (UINT)DL_BIND_ACK)
{
Free(buf);
return false;
}
Free(buf);
return true;
}
#endif // UNIX_SOLARIS
// Separate UNIX device name string into device name and id number
bool ParseUnixEthDeviceName(char *dst_devname, UINT dst_devname_size, UINT *dst_devid, char *src_name)
{
UINT len, i, j;
// Validate arguments
if (dst_devname == NULL || dst_devid == NULL || src_name == NULL)
{
return false;
}
len = strlen(src_name);
// Check string length
if(len == 0)
{
return false;
}
for (i = len-1; i+1 != 0; i--)
{
// Find last non-numeric character
if (src_name[i] < '0' || '9' < src_name[i])
{
// last character must be a number
if(src_name[i+1]==0)
{
return false;
}
*dst_devid = ToInt(src_name + i + 1);
StrCpy(dst_devname, dst_devname_size, "/dev/");
for (j = 0; j<i+1 && j<dst_devname_size-6; j++)
{
dst_devname[j+5] = src_name[j];
}
dst_devname[j+5]=0;
return true;
}
}
// All characters in the string was numeric: error
return false;
}
#if defined(BRIDGE_BPF) || defined(BRIDGE_PCAP)
// Initialize captured packet data structure
struct CAPTUREBLOCK *NewCaptureBlock(UCHAR *data, UINT size){
struct CAPTUREBLOCK *block = Malloc(sizeof(struct CAPTUREBLOCK));
block->Buf = data;
block->Size = size;
return block;
}
// Free captured packet data structure
void FreeCaptureBlock(struct CAPTUREBLOCK *block){
Free(block);
}
#endif // BRIDGE_BPF || BRIDGE_PCAP
#ifdef BRIDGE_PCAP
// Callback function to receive arriving packet (Pcap)
void PcapHandler(u_char *user, const struct pcap_pkthdr *h, const u_char *bytes)
{
ETH *e = (ETH*) user;
struct CAPTUREBLOCK *block;
UCHAR *data;
data = Malloc(h->caplen);
Copy(data, bytes, h->caplen);
block = NewCaptureBlock(data, h->caplen);
LockQueue(e->Queue);
// Discard arriving packet when queue filled
if(e->QueueSize < BRIDGE_MAX_QUEUE_SIZE){
InsertQueue(e->Queue, block);
e->QueueSize += h->caplen;
}
UnlockQueue(e->Queue);
Cancel(e->Cancel);
return;
}
// Relay thread for captured packet (Pcap)
void PcapThread(THREAD *thread, void *param)
{
ETH *e = (ETH*)param;
pcap_t *p = e->Pcap;
int ret;
// Notify initialize completed
NoticeThreadInit(thread);
// Return -1:Error -2:Terminated externally
ret = pcap_loop(p, -1, PcapHandler, (u_char*) e);
if(ret == -1){
e->Socket = INVALID_SOCKET;
pcap_perror(p, "capture");
}
return;
}
// Open Ethernet adapter (Pcap)
ETH *OpenEthPcap(char *name, bool local, bool tapmode, char *tapaddr)
{
char errbuf[PCAP_ERRBUF_SIZE];
ETH *e;
pcap_t *p;
CANCEL *c;
// Validate arguments
if (name == NULL || tapmode != false)
{
return NULL;
}
// Initialize error message buffer
errbuf[0] = 0;
// Open capturing device
p = pcap_open_live(name, 65535, (local == false), 1, errbuf);
if(p==NULL)
{
return NULL;
}
// Set to non-block mode
// (In old BSD OSs, 'select(2)' don't block normally for BPF device. To prevent busy loop)
/*
if(pcap_setnonblock(p, true, errbuf) == -1)
{
Debug("pcap_setnonblock:%s\n",errbuf);
pcap_close(p);
return NULL;
}
*/
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->Queue = NewQueue();
e->QueueSize = 0;
e->Cancel = NewCancel();
e->IfIndex = -1;
e->Socket = pcap_get_selectable_fd(p);
e->Pcap = p;
e->CaptureThread = NewThread(PcapThread, e);
WaitThreadInit(e->CaptureThread);
return e;
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#ifdef BRIDGE_BPF_THREAD
// Relay thread for captured packet (BPF)
void BpfThread(THREAD *thread, void *param)
{
ETH *e = (ETH*)param;
int fd = e->Socket;
int len;
int rest; // Rest size in buffer
UCHAR *next; // Head of next packet in buffer
struct CAPTUREBLOCK *block; // Data to enqueue
UCHAR *data;
struct bpf_hdr *hdr;
// Allocate the buffer
UCHAR *buf = Malloc(e->BufSize);
// Notify initialize completed
NoticeThreadInit(thread);
while(1){
// Determining to exit loop
if(e->Socket == INVALID_SOCKET){
break;
}
rest = read(fd, buf, e->BufSize);
if(rest < 0 && errno != EAGAIN){
// Error
close(fd);
e->Socket = INVALID_SOCKET;
Free(buf);
Cancel(e->Cancel);
return;
}
next = buf;
LockQueue(e->Queue);
while(rest>0){
// Cut out a packet
hdr = (struct bpf_hdr*)next;
// Discard arriving packet when queue filled
if(e->QueueSize < BRIDGE_MAX_QUEUE_SIZE){
data = Malloc(hdr->bh_caplen);
Copy(data, next+(hdr->bh_hdrlen), hdr->bh_caplen);
block = NewCaptureBlock(data, hdr->bh_caplen);
InsertQueue(e->Queue, block);
e->QueueSize += hdr->bh_caplen;
}
// Find the head of next packet
rest -= BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
next += BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
}
UnlockQueue(e->Queue);
Cancel(e->Cancel);
}
Free(buf);
Cancel(e->Cancel);
return;
}
#endif // BRIDGE_BPF_THREAD
// Open Ethernet adapter (BPF)
ETH *OpenEthBpf(char *name, bool local, bool tapmode, char *tapaddr)
{
ETH *e;
CANCEL *c;
char devname[MAX_SIZE];
int n = 0;
int fd;
int ret;
UINT bufsize;
struct ifreq ifr;
struct timeval to;
// Find unused bpf device and open it
do{
Format(devname, sizeof(devname), "/dev/bpf%d", n++);
fd = open (devname, O_RDWR);
if(fd<0){
perror("open");
}
}while(fd < 0 && errno == EBUSY);
// No free bpf device was found
if(fd < 0){
Debug("BPF: No minor number are free.\n");
return NULL;
}
// Enlarge buffer size
n = 524288; // Somehow(In libpcap, this size is 32768)
while(true){
// Specify buffer size
ioctl(fd, BIOCSBLEN, &n);
// Bind to the network device
StrCpy(ifr.ifr_name, IFNAMSIZ, name);
ret = ioctl(fd, BIOCSETIF, &ifr);
if(ret < 0){
if(ret == ENOBUFS && n>1500){
// Inappropriate buffer size
// Retry with half buffer size
// If buffer size is under 1500 bytes, something goes wrong
n /= 2;
continue;
}
Debug("bpf: binding network failed.\n");
close(fd);
return NULL;
}else{
break;
}
}
bufsize = n;
// Set to promiscuous mode
if(local == false){
if (ioctl(fd, BIOCPROMISC, NULL) < 0){
printf("bpf: promisc mode failed.\n");
close(fd);
return NULL;
}
}
// Set to immediate mode (Return immediately when packet arrives)
n = 1;
if (ioctl(fd, BIOCIMMEDIATE, &n) < 0){
Debug("BPF: non-block mode failed.\n");
close(fd);
return NULL;
}
// Set receiving self sending packet
n = 1;
if (ioctl(fd, BIOCGSEESENT, &n) < 0){
Debug("BPF: see sent mode failed.\n");
close(fd);
return NULL;
}
// Header complete mode (Generate whole header of sending packet)
n = 1;
if (ioctl(fd, BIOCSHDRCMPLT, &n) < 0){
Debug("BPF: Header complete mode failed.\n");
close(fd);
return NULL;
}
// Set timeout delay to 1 second
to.tv_sec = 1;
to.tv_usec = 0;
if (ioctl(fd, BIOCSRTIMEOUT, &to) < 0){
Debug("BPF: Read timeout setting failed.\n");
close(fd);
return NULL;
}
e = ZeroMalloc(sizeof(ETH));
e->Name = CopyStr(name);
e->Title = CopyStr(name);
e->IfIndex = -1;
e->Socket = fd;
e->BufSize = bufsize;
#ifdef BRIDGE_BPF_THREAD
e->Queue = NewQueue();
e->QueueSize = 0;
e->Cancel = NewCancel();
// Start capture thread
e->CaptureThread = NewThread(BpfThread, e);
WaitThreadInit(e->CaptureThread);
#else // BRIDGE_BPF_THREAD
c = NewCancel();
UnixDeletePipe(c->pipe_read, c->pipe_write);
c->pipe_read = c->pipe_write = -1;
c->SpecialFlag = true;
c->pipe_read = fd;
e->Cancel = c;
e->Buffer = Malloc(bufsize);
e->Next = e->Buffer;
e->Rest = 0;
// Set to non-blocking mode
UnixSetSocketNonBlockingMode(fd, true);
#endif // BRIDGE_BPF_THREAD
// Open interface control socket for FreeBSD
e->SocketBsdIf = socket(AF_LOCAL, SOCK_DGRAM, 0);
// Get MTU value
e->InitialMtu = EthGetMtu(e);
return e;
}
#endif // BRIDGE_BPF
// Open Ethernet adapter
ETH *OpenEth(char *name, bool local, bool tapmode, char *tapaddr)
{
ETH *ret = NULL;
#if defined(UNIX_LINUX)
ret = OpenEthLinux(name, local, tapmode, tapaddr);
#elif defined(UNIX_SOLARIS)
ret = OpenEthSolaris(name, local, tapmode, tapaddr);
#elif defined(BRIDGE_PCAP)
ret = OpenEthPcap(name, local, tapmode, tapaddr);
#elif defined(BRIDGE_BPF)
ret = OpenEthBpf(name, local, tapmode, tapaddr);
#endif
return ret;
}
typedef struct UNIXTHREAD
{
pthread_t thread;
bool finished;
} UNIXTHREAD;
// Close Ethernet adapter
void CloseEth(ETH *e)
{
// Validate arguments
if (e == NULL)
{
return;
}
if (e->Tap != NULL)
{
#ifndef NO_VLAN
FreeTap(e->Tap);
#endif // NO_VLAN
}
#ifdef BRIDGE_PCAP
{
struct CAPTUREBLOCK *block;
pcap_breakloop(e->Pcap);
WaitThread(e->CaptureThread, INFINITE);
ReleaseThread(e->CaptureThread);
pcap_close(e->Pcap);
while (block = GetNext(e->Queue)){
Free(block->Buf);
FreeCaptureBlock(block);
}
ReleaseQueue(e->Queue);
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#ifdef BRIDGE_BPF_THREAD
{
struct CAPTUREBLOCK *block;
int fd = e->Socket;
e->Socket = INVALID_SOCKET;
WaitThread(e->CaptureThread, INFINITE);
ReleaseThread(e->CaptureThread);
e->Socket = fd; // restore to close after
while (block = GetNext(e->Queue)){
Free(block->Buf);
FreeCaptureBlock(block);
}
ReleaseQueue(e->Queue);
}
#else // BRIDGE_BPF_THREAD
Free(e->Buffer);
#endif // BRIDGE_BPF_THREAD
#endif // BRIDGE_BPF
ReleaseCancel(e->Cancel);
Free(e->Name);
Free(e->Title);
// Restore MTU value
EthSetMtu(e, 0);
if (e->Socket != INVALID_SOCKET)
{
#if defined(BRIDGE_BPF) || defined(BRIDGE_PCAP) || defined(UNIX_SOLARIS)
close(e->Socket);
#else // BRIDGE_PCAP
closesocket(e->Socket);
#endif // BRIDGE_PCAP
#if defined(BRIDGE_BPF) || defined(UNIX_SOLARIS)
if (e->SocketBsdIf != INVALID_SOCKET)
{
close(e->SocketBsdIf);
}
#endif // BRIDGE_BPF || UNIX_SOLARIS
}
Free(e);
}
// Get cancel object
CANCEL *EthGetCancel(ETH *e)
{
CANCEL *c;
// Validate arguments
if (e == NULL)
{
return NULL;
}
c = e->Cancel;
AddRef(c->ref);
return c;
}
// Read a packet
UINT EthGetPacket(ETH *e, void **data)
{
UINT ret = 0;
#if defined(UNIX_LINUX)
ret = EthGetPacketLinux(e, data);
#elif defined(UNIX_SOLARIS)
ret = EthGetPacketSolaris(e, data);
#elif defined(BRIDGE_PCAP)
ret = EthGetPacketPcap(e, data);
#elif defined(BRIDGE_BPF)
ret = EthGetPacketBpf(e, data);
#endif
return ret;
}
#ifdef UNIX_LINUX
2014-10-03 19:09:23 +04:00
2014-01-04 17:00:08 +04:00
UINT EthGetPacketLinux(ETH *e, void **data)
{
int s, ret;
UCHAR tmp[UNIX_ETH_TMP_BUFFER_SIZE];
2014-10-03 19:09:23 +04:00
struct iovec msg_iov;
struct msghdr msg_header;
struct cmsghdr *cmsg;
union
{
struct cmsghdr cmsg;
char buf[CMSG_SPACE(sizeof(struct my_tpacket_auxdata))];
} cmsg_buf;
2014-01-04 17:00:08 +04:00
// Validate arguments
if (e == NULL || data == NULL)
{
return INFINITE;
}
if (e->Tap != NULL)
{
#ifndef NO_VLAN
// tap mode
void *buf;
UINT size;
if (VLanGetNextPacket(e->Tap, &buf, &size) == false)
{
return INFINITE;
}
*data = buf;
return size;
#else // NO_VLAN
return INFINITE;
#endif
}
s = e->Socket;
if (s == INVALID_SOCKET)
{
return INFINITE;
}
// Read
2014-10-03 19:09:23 +04:00
msg_iov.iov_base = tmp;
msg_iov.iov_len = sizeof(tmp);
msg_header.msg_name = NULL;
msg_header.msg_namelen = 0;
msg_header.msg_iov = &msg_iov;
msg_header.msg_iovlen = 1;
if (e->Linux_IsAuxDataSupported)
{
memset(&cmsg_buf, 0, sizeof(cmsg_buf));
msg_header.msg_control = &cmsg_buf;
msg_header.msg_controllen = sizeof(cmsg_buf);
}
else
{
msg_header.msg_control = NULL;
msg_header.msg_controllen = 0;
}
msg_header.msg_flags = 0;
ret = recvmsg(s, &msg_header, 0);
2014-01-04 17:00:08 +04:00
if (ret == 0 || (ret == -1 && errno == EAGAIN))
{
// No packet
*data = NULL;
return 0;
}
else if (ret == -1 || ret > sizeof(tmp))
{
// Error
*data = NULL;
e->Socket = INVALID_SOCKET;
return INFINITE;
}
else
{
2014-10-03 19:09:23 +04:00
bool flag = false;
USHORT api_vlan_id = 0;
USHORT api_vlan_tpid = 0;
if (e->Linux_IsAuxDataSupported)
{
for (cmsg = CMSG_FIRSTHDR(&msg_header); cmsg; cmsg = CMSG_NXTHDR(&msg_header, cmsg))
{
struct my_tpacket_auxdata *aux;
UINT len;
USHORT vlan_tpid = 0x8100;
USHORT vlan_id = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct my_tpacket_auxdata)) ||
cmsg->cmsg_level != SOL_PACKET ||
cmsg->cmsg_type != MY_PACKET_AUXDATA)
{
continue;
}
aux = (struct my_tpacket_auxdata *)CMSG_DATA(cmsg);
if (aux != NULL)
{
if (aux->tp_vlan_tci != 0)
{
vlan_id = aux->tp_vlan_tci;
}
}
if (vlan_id != 0)
{
api_vlan_id = vlan_id;
api_vlan_tpid = vlan_tpid;
break;
}
}
if (api_vlan_id != 0 && api_vlan_tpid != 0)
{
// VLAN ID has been received with PACKET_AUXDATA.
// Insert the tag.
USHORT vlan_id_ne = Endian16(api_vlan_id);
USHORT vlan_tpid_ne = Endian16(api_vlan_tpid);
if (ret >= 14)
{
if (*((USHORT *)(tmp + 12)) != vlan_tpid_ne)
{
*data = MallocFast(ret + 4);
Copy(*data, tmp, 12);
Copy(((UCHAR *)*data) + 12, &vlan_tpid_ne, 2);
Copy(((UCHAR *)*data) + 14, &vlan_id_ne, 2);
Copy(((UCHAR *)*data) + 16, tmp + 12, ret - 12);
flag = true;
ret += 4;
}
}
}
}
// Success to read a packet (No VLAN)
if (flag == false)
{
*data = MallocFast(ret);
Copy(*data, tmp, ret);
}
2014-01-04 17:00:08 +04:00
return ret;
}
return 0;
}
#endif // UNIX_LINUX
#ifdef UNIX_SOLARIS
UINT EthGetPacketSolaris(ETH *e, void **data)
{
UCHAR tmp[UNIX_ETH_TMP_BUFFER_SIZE];
struct strbuf buf;
int s;
int flags = 0;
int ret;
// Validate arguments
if (e == NULL || data == NULL)
{
return INFINITE;
}
s = e->Socket;
if (s == INVALID_SOCKET)
{
return INFINITE;
}
Zero(&buf, sizeof(buf));
buf.buf = tmp;
buf.maxlen = sizeof(tmp);
ret = getmsg(s, NULL, &buf, &flags);
if (ret < 0 || ret > sizeof(tmp))
{
if (errno == EAGAIN)
{
// No packet
*data = NULL;
return 0;
}
// Error
*data = NULL;
return INFINITE;
}
ret = buf.len;
*data = MallocFast(ret);
Copy(*data, tmp, ret);
return ret;
}
#endif // UNIX_SOLARIS
#ifdef BRIDGE_PCAP
UINT EthGetPacketPcap(ETH *e, void **data)
{
struct CAPTUREBLOCK *block;
UINT size;
LockQueue(e->Queue);
block = GetNext(e->Queue);
if(block != NULL){
e->QueueSize -= block->Size;
}
UnlockQueue(e->Queue);
if(block == NULL){
*data = NULL;
if(e->Socket == INVALID_SOCKET){
return INFINITE;
}
return 0;
}
*data = block->Buf;
size = block->Size;
FreeCaptureBlock(block);
return size;
}
#endif // BRIDGE_PCAP
#ifdef BRIDGE_BPF
#ifdef BRIDGE_BPF_THREAD
UINT EthGetPacketBpf(ETH *e, void **data)
{
struct CAPTUREBLOCK *block;
UINT size;
LockQueue(e->Queue);
block = GetNext(e->Queue);
if(block != NULL){
e->QueueSize -= block->Size;
}
UnlockQueue(e->Queue);
if(block == NULL){
*data = NULL;
if(e->Socket == INVALID_SOCKET){
return INFINITE;
}
return 0;
}
*data = block->Buf;
size = block->Size;
FreeCaptureBlock(block);
return size;
}
#else // BRIDGE_BPF_THREAD
UINT EthGetPacketBpf(ETH *e, void **data)
{
struct bpf_hdr *hdr;
if(e->Rest<=0){
e->Rest = read(e->Socket, e->Buffer, e->BufSize);
if(e->Rest < 0){
*data = NULL;
if(errno != EAGAIN){
// Error
return INFINITE;
}
// No packet
return 0;
}
e->Next = e->Buffer;
}
// Cut out a packet
hdr = (struct bpf_hdr*)e->Next;
*data = Malloc(hdr->bh_caplen);
Copy(*data, e->Next+(hdr->bh_hdrlen), hdr->bh_caplen);
// Find the head of next packet
e->Rest -= BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
e->Next += BPF_WORDALIGN(hdr->bh_hdrlen + hdr->bh_caplen);
return hdr->bh_caplen;
}
#endif // BRIDGE_BPF_THREAD
#endif // BRIDGE_BPF
// Send multiple packets
void EthPutPackets(ETH *e, UINT num, void **datas, UINT *sizes)
{
UINT i;
// Validate arguments
if (e == NULL || num == 0 || datas == NULL || sizes == NULL)
{
return;
}
for (i = 0;i < num;i++)
{
EthPutPacket(e, datas[i], sizes[i]);
}
}
// Send a packet
void EthPutPacket(ETH *e, void *data, UINT size)
{
int s, ret;
// Validate arguments
if (e == NULL || data == NULL)
{
return;
}
if (size < 14 || size > MAX_PACKET_SIZE)
{
Free(data);
return;
}
if (e->Tap != NULL)
{
#ifndef NO_VLAN
// tap mode
VLanPutPacket(e->Tap, data, size);
#endif // NO_VLAN
return;
}
s = e->Socket;
if (s == INVALID_SOCKET)
{
Free(data);
return;
}
// Send to device
#ifdef BRIDGE_PCAP
ret = pcap_inject(e->Pcap, data, size);
if( ret == -1 ){
#ifdef _DEBUG
pcap_perror(e->Pcap, "inject");
#endif // _DEBUG
Debug("EthPutPacket: ret:%d size:%d\n", ret, size);
}
#else // BRIDGE_PCAP
2014-10-03 19:09:23 +04:00
#ifndef UNIX_LINUX
2014-01-04 17:00:08 +04:00
ret = write(s, data, size);
if (ret<0)
{
Debug("EthPutPacket: ret:%d errno:%d size:%d\n", ret, errno, size);
}
2014-10-03 19:09:23 +04:00
#else // UNIX_LINUX
{
struct iovec msg_iov;
struct msghdr msg_header;
msg_iov.iov_base = data;
msg_iov.iov_len = size;
msg_header.msg_name = NULL;
msg_header.msg_namelen = 0;
msg_header.msg_iov = &msg_iov;
msg_header.msg_iovlen = 1;
msg_header.msg_control = NULL;
msg_header.msg_controllen = 0;
msg_header.msg_flags = 0;
ret = sendmsg(s, &msg_header, 0);
if (ret<0)
{
Debug("EthPutPacket: ret:%d errno:%d size:%d\n", ret, errno, size);
}
}
#endif // UNIX_LINUX
2014-01-04 17:00:08 +04:00
#endif //BRIDGE_PCAP
Free(data);
}
#endif // BRIDGE_C
// Developed by SoftEther VPN Project at University of Tsukuba in Japan.
// Department of Computer Science has dozens of overly-enthusiastic geeks.
// Join us: http://www.tsukuba.ac.jp/english/admission/