1
0
mirror of https://github.com/SoftEtherVPN/SoftEtherVPN.git synced 2024-09-20 18:50:40 +03:00
SoftEtherVPN/src/Cedar/IPsec_IKE.h

460 lines
23 KiB
C
Raw Normal View History

2014-01-04 17:00:08 +04:00
// SoftEther VPN Source Code
// Cedar Communication Module
//
// SoftEther VPN Server, Client and Bridge are free software under GPLv2.
//
// Copyright (c) 2012-2014 Daiyuu Nobori.
// Copyright (c) 2012-2014 SoftEther VPN Project, University of Tsukuba, Japan.
// Copyright (c) 2012-2014 SoftEther Corporation.
//
// All Rights Reserved.
//
// http://www.softether.org/
//
// Author: Daiyuu Nobori
// Comments: Tetsuo Sugiyama, Ph.D.
//
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// version 2 as published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License version 2
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// THE LICENSE AGREEMENT IS ATTACHED ON THE SOURCE-CODE PACKAGE
// AS "LICENSE.TXT" FILE. READ THE TEXT FILE IN ADVANCE TO USE THE SOFTWARE.
//
//
// THIS SOFTWARE IS DEVELOPED IN JAPAN, AND DISTRIBUTED FROM JAPAN,
// UNDER JAPANESE LAWS. YOU MUST AGREE IN ADVANCE TO USE, COPY, MODIFY,
// MERGE, PUBLISH, DISTRIBUTE, SUBLICENSE, AND/OR SELL COPIES OF THIS
// SOFTWARE, THAT ANY JURIDICAL DISPUTES WHICH ARE CONCERNED TO THIS
// SOFTWARE OR ITS CONTENTS, AGAINST US (SOFTETHER PROJECT, SOFTETHER
// CORPORATION, DAIYUU NOBORI OR OTHER SUPPLIERS), OR ANY JURIDICAL
// DISPUTES AGAINST US WHICH ARE CAUSED BY ANY KIND OF USING, COPYING,
// MODIFYING, MERGING, PUBLISHING, DISTRIBUTING, SUBLICENSING, AND/OR
// SELLING COPIES OF THIS SOFTWARE SHALL BE REGARDED AS BE CONSTRUED AND
// CONTROLLED BY JAPANESE LAWS, AND YOU MUST FURTHER CONSENT TO
// EXCLUSIVE JURISDICTION AND VENUE IN THE COURTS SITTING IN TOKYO,
// JAPAN. YOU MUST WAIVE ALL DEFENSES OF LACK OF PERSONAL JURISDICTION
// AND FORUM NON CONVENIENS. PROCESS MAY BE SERVED ON EITHER PARTY IN
// THE MANNER AUTHORIZED BY APPLICABLE LAW OR COURT RULE.
//
// USE ONLY IN JAPAN. DO NOT USE IT IN OTHER COUNTRIES. IMPORTING THIS
// SOFTWARE INTO OTHER COUNTRIES IS AT YOUR OWN RISK. SOME COUNTRIES
// PROHIBIT ENCRYPTED COMMUNICATIONS. USING THIS SOFTWARE IN OTHER
// COUNTRIES MIGHT BE RESTRICTED.
//
//
2014-01-15 13:01:42 +04:00
// SOURCE CODE CONTRIBUTION
// ------------------------
//
// Your contribution to SoftEther VPN Project is much appreciated.
// Please send patches to us through GitHub.
// Read the SoftEther VPN Patch Acceptance Policy in advance:
// http://www.softether.org/5-download/src/9.patch
//
//
2014-01-04 17:00:08 +04:00
// DEAR SECURITY EXPERTS
// ---------------------
//
// If you find a bug or a security vulnerability please kindly inform us
// about the problem immediately so that we can fix the security problem
// to protect a lot of users around the world as soon as possible.
//
// Our e-mail address for security reports is:
// softether-vpn-security [at] softether.org
//
// Please note that the above e-mail address is not a technical support
// inquiry address. If you need technical assistance, please visit
// http://www.softether.org/ and ask your question on the users forum.
//
// Thank you for your cooperation.
// IPsec_IKE.h
// Header of IPsec_IKE.c
#ifndef IPSEC_IKE_H
#define IPSEC_IKE_H
//// Macro
//// Constants
// State
#define IKE_SA_MAIN_MODE 0 // Main mode
#define IKE_SA_AGRESSIVE_MODE 1 // Aggressive mode
#define IKE_SA_MM_STATE_1_SA 0 // Main mode state 1 (SA exchange is complete. Wait for key exchange)
#define IKE_SA_MM_STATE_2_KEY 1 // Main mode state 2 (Key exchange is complete. Wait for exchange ID)
#define IKE_SA_MM_STATE_3_ESTABLISHED 2 // Main mode state 3 (ID exchange is complete. Established)
#define IKE_SA_AM_STATE_1_SA 0 // Aggressive mode state 1 (SA exchange is completed. Wait for hash)
#define IKE_SA_AM_STATE_2_ESTABLISHED 1 // Aggressive mode state 2 (Hash exchange is completed. Established)
#define IKE_SA_RESEND_INTERVAL (2 * 1000) // IKE SA packet retransmission interval
#define IKE_SA_RAND_SIZE 16 // Size of the random number
// ESP
#define IKE_ESP_HASH_SIZE 12 // The hash size for the ESP packet
// Type of UDP packet
#define IKE_UDP_TYPE_ISAKMP 0 // ISAKMP packet (destination 500)
#define IKE_UDP_TYPE_ESP 1 // ESP packet (destination 4500)
#define IKE_UDP_KEEPALIVE 2 // KeepAlive packet
#define IKE_UDP_SPECIAL 3 // Special packet
// String for Vendor ID
#define IKE_VENDOR_ID_RFC3947_NAT_T "0x4a131c81070358455c5728f20e95452f"
#define IKE_VENDOR_ID_IPSEC_NAT_T_IKE_03 "0x7d9419a65310ca6f2c179d9215529d56"
#define IKE_VENDOR_ID_IPSEC_NAT_T_IKE_02 "0x90cb80913ebb696e086381b5ec427b1f"
#define IKE_VENDOR_ID_IPSEC_NAT_T_IKE_02_2 "0xcd60464335df21f87cfdb2fc68b6a448"
#define IKE_VENDOR_ID_IPSEC_NAT_T_IKE_00 "0x4485152d18b6bbcd0be8a8469579ddcc"
#define IKE_VENDOR_ID_RFC3706_DPD "0xafcad71368a1f1c96b8696fc77570100"
#define IKE_VENDOR_ID_MICROSOFT_L2TP "0x4048b7d56ebce88525e7de7f00d6c2d3"
#define IKE_VENDOR_ID_MS_NT5_ISAKMPOAKLEY "0x1e2b516905991c7d7c96fcbfb587e461"
#define IKE_VENDOR_ID_MS_VID_INITIALCONTACT "0x26244d38eddb61b3172a36e3d0cfb819"
// Quota
#define IKE_QUOTA_MAX_NUM_CLIENTS_PER_IP 1000 // The number of IKE_CLIENT per IP address
#define IKE_QUOTA_MAX_NUM_CLIENTS 30000 // Limit number of IKE_CLIENT
#define IKE_QUOTA_MAX_SA_PER_CLIENT 100 // The limit number of SA for each IKE_CLIENT
// Time-out
#define IKE_TIMEOUT_FOR_IKE_CLIENT 150000 // IKE_CLIENT non-communication disconnect time
#define IKE_TIMEOUT_FOR_IKE_CLIENT_FOR_NOT_ESTABLISHED 10000 // IKE_CLIENT non-communication disconnect time (connection incomplete)
#define IKE_INTERVAL_UDP_KEEPALIVE 5000 // UDP KeepAlive transmission interval
#define IKE_QUICKMODE_START_INTERVAL 2000 // QuickMode start interval
#define IKE_QUICKMODE_FAILED_TIMEOUT 10000 // Maximum time to tolerant that to fail to establish a QuickMode
#define IKE_INTERVAL_DPD_KEEPALIVE 10000 // DPD KeepAlive transmission interval
// Expiration margin
#define IKE_SOFT_EXPIRES_MARGIN 1000 // Expiration margin
//// Type
// IKE SA transform data
struct IKE_SA_TRANSFORM_SETTING
{
IKE_CRYPTO *Crypto;
UINT CryptoKeySize;
IKE_HASH *Hash;
IKE_DH *Dh;
UINT CryptoId;
UINT HashId;
UINT DhId;
UINT LifeKilobytes;
UINT LifeSeconds;
};
// IPsec SA transforms data
struct IPSEC_SA_TRANSFORM_SETTING
{
IKE_CRYPTO *Crypto;
UINT CryptoKeySize;
IKE_HASH *Hash;
IKE_DH *Dh;
UINT CryptoId;
UINT HashId;
UINT DhId;
UINT LifeKilobytes;
UINT LifeSeconds;
UINT SpiServerToClient;
UINT CapsuleMode;
bool OnlyCapsuleModeIsInvalid;
};
// Function support information
struct IKE_CAPS
{
// Support Information
bool NatTraversalRfc3947; // RFC 3947 Negotiation of NAT-Traversal in the IKE
bool NatTraversalDraftIetf; // draft-ietf-ipsec-nat-t-ike
bool DpdRfc3706; // RFC 3706 A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers
bool MS_L2TPIPSecVPNClient; // Vendor ID: Microsoft L2TP/IPSec VPN Client
bool MS_NT5_ISAKMP_OAKLEY; // Vendor ID: MS NT5 ISAKMPOAKLEY
bool MS_Vid_InitialContact; // Vendor ID: Microsoft Vid-Initial-Contact
// Use information
bool UsingNatTraversalRfc3947;
bool UsingNatTraversalDraftIetf;
};
// IKE / IPsec client
struct IKE_CLIENT
{
UINT Id;
IP ClientIP;
UINT ClientPort;
IP ServerIP;
UINT ServerPort;
IKE_SA *CurrentIkeSa; // IKE SA to be used currently
IPSECSA *CurrentIpSecSaRecv; // IPsec SA to be used currently (receive direction)
IPSECSA *CurrentIpSecSaSend; // IPsec SA to be currently in use (transmit direction)
UINT64 FirstCommTick; // Time the first data communication
UINT64 LastCommTick; // Time that made the last communication (received data) time
bool Deleting; // Deleting
UINT64 NextKeepAliveSendTick; // Time to send the next KeepAlive
UINT64 NextDpdSendTick; // Time to send the next DPD
UINT DpdSeqNo; // DPD sequence number
char ClientId[128]; // ID presented by the client
char Secret[MAX_SIZE]; // Secret value of the authentication is successful
bool IsMicrosoft; // Whether the client is Microsoft's
IPSEC_SA_TRANSFORM_SETTING CachedTransformSetting; // Cached transform attribute value
UINT64 CurrentExpiresSoftTick_StoC; // The maximum value of the flexible expiration date of the current (server -> client)
UINT64 CurrentExpiresSoftTick_CtoS; // The maximum value of the flexible expiration date of the current (client -> server)
UINT CurrentNumEstablishedIPsecSA_StoC; // The number of IPsec SA currently active (server -> client)
UINT CurrentNumEstablishedIPsecSA_CtoS; // The number of IPsec SA currently active (client -> server)
UINT CurrentNumHealtyIPsecSA_CtoS; // The number of currently available IPsec SA which expiration well within (client -> server)
UINT CurrentNumHealtyIPsecSA_StoC; // The number of currently available IPsec SA which expiration well within (server -> client)
bool SendID1andID2; // Whether to send the ID in QM
UCHAR SendID1_Type, SendID2_Type;
UCHAR SendID1_Protocol, SendID2_Protocol;
USHORT SendID1_Port, SendID2_Port;
BUF *SendID1_Buf, *SendID2_Buf;
bool SendNatOaDraft1, SendNatOaDraft2, SendNatOaRfc; // Whether to send the NAT-OA in QM
bool StartQuickModeAsSoon; // Flag to indicate to the start of the Quick Mode as soon as possible
UINT64 LastQuickModeStartTick; // Time which the last QuickMode started
UINT64 NeedQmBeginTick; // Time which a start-up of QuickMode is required
// L2TP related
L2TP_SERVER *L2TP; // L2TP server
UINT L2TPClientPort; // Client-side port number of L2TP
IP L2TPServerIP, L2TPClientIP; // IP address used by the L2TP processing
bool IsL2TPOnIPsecTunnelMode; // Whether the L2TP is working on IPsec tunnel mode
// EtherIP related
ETHERIP_SERVER *EtherIP; // EtherIP server
bool IsEtherIPOnIPsecTunnelMode; // Whether the EtherIP is working on IPsec tunnel mode
// Transport mode related
IP TransportModeServerIP;
IP TransportModeClientIP;
bool ShouldCalcChecksumForUDP; // Flag to calculate the checksum for the UDP packet
// Tunnel mode related
IP TunnelModeServerIP; // Server-side internal IP address
IP TunnelModeClientIP; // Client-side internal IP address
USHORT TunnelSendIpId; // ID of the transmission IP header
};
// IKE SA
struct IKE_SA
{
UINT Id;
IKE_CLIENT *IkeClient; // Pointer to the IKE client
UINT64 InitiatorCookie, ResponderCookie; // Cookie
UINT Mode; // Mode
UINT State; // State
BUF *SendBuffer; // Buffer during transmission
UINT64 NextSendTick; // Next transmission time
UINT64 FirstCommTick; // Time that the first data communication
UINT64 EstablishedTick; // Time that the SA has been established
UINT64 LastCommTick; // Time that made the last communication (received data) time
IKE_SA_TRANSFORM_SETTING TransformSetting; // Transform Configuration
IKE_CAPS Caps; // IKE Caps
BUF *InitiatorRand, *ResponderRand; // Random number
BUF *DhSharedKey; // DH common key
BUF *GXi, *GXr; // DH exchange data
BUF *SAi_b; // Data needed for authentication
BUF *YourIDPayloadForAM; // Copy the ID payload of the client-side
UCHAR SKEYID[IKE_MAX_HASH_SIZE]; // Key set
UCHAR SKEYID_d[IKE_MAX_HASH_SIZE];
UCHAR SKEYID_a[IKE_MAX_HASH_SIZE];
UCHAR SKEYID_e[IKE_MAX_HASH_SIZE];
UCHAR InitiatorHashForAM[IKE_MAX_HASH_SIZE];
IKE_CRYPTO_KEY *CryptoKey; // Common encryption key
UINT HashSize; // Hash size
UINT KeySize; // Key size
UINT BlockSize; // Block size
UCHAR Iv[IKE_MAX_BLOCK_SIZE]; // IV
bool IsIvExisting; // Whether an IV exists
bool Established; // Established flag
bool Deleting; // Deleting
UINT NumResends; // The number of retransmissions
char Secret[MAX_SIZE]; // Secret value of the authentication is successful
};
// IPsec SA
struct IPSECSA
{
UINT Id;
IKE_CLIENT *IkeClient; // Pointer to the IKE client
IKE_SA *IkeSa; // Pointer to IKE_SA to use for transmission
UCHAR Iv[IKE_MAX_BLOCK_SIZE]; // IV used in the Quick Mode exchange
bool IsIvExisting; // Whether the IV exists
UINT MessageId; // Message ID used in Quick Mode exchange
UINT Spi; // SPI
UINT CurrentSeqNo; // Send sequence number
BUF *SendBuffer; // Buffer during transmission
UINT NumResends; // The number of retransmissions
UINT64 NextSendTick; // Next transmission date and time
UINT64 FirstCommTick; // Time the last data sent
UINT64 EstablishedTick; // Time that the SA has been established
UINT64 LastCommTick; // Time that made the last communication (received data) time
UINT64 ExpiresHardTick; // Exact expiration time
UINT64 ExpiresSoftTick; // Flexible expiration time
UINT64 TotalSize; // Size sent to and received
IPSEC_SA_TRANSFORM_SETTING TransformSetting; // Transform Configuration
bool ServerToClient; // Whether is upload direction
IPSECSA *PairIPsecSa; // IPsec SA that are paired
bool Established; // Established flag
BUF *InitiatorRand, *ResponderRand; // Random number
BUF *SharedKey; // PFS shared key
UCHAR Hash3[IKE_MAX_HASH_SIZE]; // Hash 3
UCHAR KeyMat[IKE_MAX_KEY_SIZE + IKE_MAX_HASH_SIZE]; // Encryption key
UCHAR HashKey[IKE_MAX_HASH_SIZE]; // Hash key
IKE_CRYPTO_KEY *CryptoKey; // Key data
bool Deleting; // Deleting
UCHAR EspIv[IKE_MAX_BLOCK_SIZE]; // IV for ESP communication
bool Initiated; // The server-side is initiator
DH_CTX *Dh; // DH (only if the server-side is initiator)
bool StartQM_FlagSet; // Whether the flag to indicate to do the QM is set to the IKE_CLIENT
UCHAR SKEYID_d[IKE_MAX_HASH_SIZE];
UCHAR SKEYID_a[IKE_MAX_HASH_SIZE];
IKE_HASH *SKEYID_Hash;
};
// IKE server
struct IKE_SERVER
{
CEDAR *Cedar;
IPSEC_SERVER *IPsec;
UINT64 Now; // Current time
LIST *SendPacketList; // Transmission packet
INTERRUPT_MANAGER *Interrupts; // Interrupt manager
SOCK_EVENT *SockEvent; // SockEvent
IKE_ENGINE *Engine; // Encryption engine
LIST *ClientList; // Client list
LIST *IkeSaList; // SA list
LIST *IPsecSaList; // IPsec SA list
LIST *ThreadList; // L2TP thread list
bool StateHasChanged; // Flag whether the state has changed
UINT CurrentIkeSaId, CurrentIPsecSaId, CurrentIkeClientId, CurrentEtherId; // Serial number ID
// Setting data
char Secret[MAX_SIZE]; // Pre-shared key
};
//// Function prototype
IKE_SERVER *NewIKEServer(CEDAR *cedar, IPSEC_SERVER *ipsec);
void FreeIKEServer(IKE_SERVER *ike);
void SetIKEServerSockEvent(IKE_SERVER *ike, SOCK_EVENT *e);
void ProcIKEPacketRecv(IKE_SERVER *ike, UDPPACKET *p);
void StopIKEServer(IKE_SERVER *ike);
void ProcessIKEInterrupts(IKE_SERVER *ike);
IKE_PACKET *ParseIKEPacketHeader(UDPPACKET *p);
void ProcIkeMainModePacketRecv(IKE_SERVER *ike, UDPPACKET *p, IKE_PACKET *header);
void ProcIkeQuickModePacketRecv(IKE_SERVER *ike, UDPPACKET *p, IKE_PACKET *header);
void ProcIkeAggressiveModePacketRecv(IKE_SERVER *ike, UDPPACKET *p, IKE_PACKET *header);
void ProcIkeInformationalExchangePacketRecv(IKE_SERVER *ike, UDPPACKET *p, IKE_PACKET *header);
void FreeIkeSa(IKE_SA *sa);
void FreeIkeClient(IKE_SERVER *ike, IKE_CLIENT *c);
UINT64 GenerateNewResponserCookie(IKE_SERVER *ike);
bool GetBestTransformSettingForIkeSa(IKE_SERVER *ike, IKE_PACKET *pr, IKE_SA_TRANSFORM_SETTING *setting);
bool TransformPayloadToTransformSettingForIkeSa(IKE_SERVER *ike, IKE_PACKET_TRANSFORM_PAYLOAD *transform, IKE_SA_TRANSFORM_SETTING *setting);
IKE_CLIENT *SearchIkeClientForIkePacket(IKE_SERVER *ike, IP *client_ip, UINT client_port, IP *server_ip, UINT server_port, IKE_PACKET *pr);
IKE_CLIENT *SearchOrCreateNewIkeClientForIkePacket(IKE_SERVER *ike, IP *client_ip, UINT client_port, IP *server_ip, UINT server_port, IKE_PACKET *pr);
UINT GetNumberOfIkeClientsFromIP(IKE_SERVER *ike, IP *client_ip);
UINT GetNumberOfIPsecSaOfIkeClient(IKE_SERVER *ike, IKE_CLIENT *c);
UINT GetNumberOfIkeSaOfIkeClient(IKE_SERVER *ike, IKE_CLIENT *c);
int CmpIkeClient(void *p1, void *p2);
int CmpIkeSa(void *p1, void *p2);
int CmpIPsecSa(void *p1, void *p2);
IKE_SA *FindIkeSaByEndPointAndInitiatorCookie(IKE_SERVER *ike, IP *client_ip, UINT client_port, IP *server_ip, UINT server_port, UINT64 init_cookie, UINT mode);
IKE_SA *FindIkeSaByResponderCookie(IKE_SERVER *ike, UINT64 responder_cookie);
IKE_SA *FindIkeSaByResponderCookieAndClient(IKE_SERVER *ike, UINT64 responder_cookie, IKE_CLIENT *c);
IKE_CLIENT *NewIkeClient(IKE_SERVER *ike, IP *client_ip, UINT client_port, IP *server_ip, UINT server_port);
IKE_CLIENT *SetIkeClientEndpoint(IKE_SERVER *ike, IKE_CLIENT *c, IP *client_ip, UINT client_port, IP *server_ip, UINT server_port);
IKE_SA *NewIkeSa(IKE_SERVER *ike, IKE_CLIENT *c, UINT64 init_cookie, UINT mode, IKE_SA_TRANSFORM_SETTING *setting);
IKE_PACKET_PAYLOAD *TransformSettingToTransformPayloadForIke(IKE_SERVER *ike, IKE_SA_TRANSFORM_SETTING *setting);
void IkeSaSendPacket(IKE_SERVER *ike, IKE_SA *sa, IKE_PACKET *p);
IKE_PACKET *IkeSaRecvPacket(IKE_SERVER *ike, IKE_SA *sa, void *data, UINT size);
void IkeSendUdpPacket(IKE_SERVER *ike, UINT type, IP *server_ip, UINT server_port, IP *client_ip, UINT client_port, void *data, UINT size);
void IkeAddVendorIdPayloads(IKE_PACKET *p);
BUF *IkeStrToVendorId(char *str);
void IkeAddVendorId(IKE_PACKET *p, char *str);
bool IkeIsVendorIdExists(IKE_PACKET *p, char *str);
void IkeCheckCaps(IKE_CAPS *caps, IKE_PACKET *p);
BUF *IkeCalcNatDetectHash(IKE_SERVER *ike, IKE_HASH *hash, UINT64 initiator_cookie, UINT64 responder_cookie, IP *ip, UINT port);
void IkeCalcSaKeySet(IKE_SERVER *ike, IKE_SA *sa, char *secret);
IKE_CRYPTO_KEY *IkeNewCryptoKeyFromK(IKE_SERVER *ike, void *k, UINT k_size, IKE_HASH *h, IKE_CRYPTO *c, UINT crypto_key_size);
BUF *IkeExpandKeySize(IKE_HASH *h, void *k, UINT k_size, UINT target_size);
void IkeSaUpdateIv(IKE_SA *sa, void *iv, UINT iv_size);
IPSECSA *NewIPsecSa(IKE_SERVER *ike, IKE_CLIENT *c, IKE_SA *ike_sa, bool initiate, UINT message_id, bool server_to_client, void *iv, UINT spi, void *init_rand_data, UINT init_rand_size, void *res_rand_data, UINT res_rand_size, IPSEC_SA_TRANSFORM_SETTING *setting, void *shared_key_data, UINT shared_key_size);
void IkeCalcPhase2InitialIv(void *iv, IKE_SA *sa, UINT message_id);
bool GetBestTransformSettingForIPsecSa(IKE_SERVER *ike, IKE_PACKET *pr, IPSEC_SA_TRANSFORM_SETTING *setting, IP *server_ip);
bool TransformPayloadToTransformSettingForIPsecSa(IKE_SERVER *ike, IKE_PACKET_TRANSFORM_PAYLOAD *transform, IPSEC_SA_TRANSFORM_SETTING *setting, IP *server_ip);
IKE_PACKET_PAYLOAD *TransformSettingToTransformPayloadForIPsec(IKE_SERVER *ike, IPSEC_SA_TRANSFORM_SETTING *setting);
UINT GenerateNewIPsecSaSpi(IKE_SERVER *ike, UINT counterpart_spi);
IPSECSA *SearchClientToServerIPsecSaBySpi(IKE_SERVER *ike, UINT spi);
IPSECSA *SearchIPsecSaBySpi(IKE_SERVER *ike, IKE_CLIENT *c, UINT spi);
IPSECSA *SearchIPsecSaByMessageId(IKE_SERVER *ike, IKE_CLIENT *c, UINT message_id);
void IPsecSaSendPacket(IKE_SERVER *ike, IPSECSA *sa, IKE_PACKET *p);
IKE_PACKET *IPsecSaRecvPacket(IKE_SERVER *ike, IPSECSA *sa, void *data, UINT size);
void IPsecSaUpdateIv(IPSECSA *sa, void *iv, UINT iv_size);
void ProcDeletePayload(IKE_SERVER *ike, IKE_CLIENT *c, IKE_PACKET_DELETE_PAYLOAD *d);
void MarkIPsecSaAsDeleted(IKE_SERVER *ike, IPSECSA *sa);
void MarkIkeSaAsDeleted(IKE_SERVER *ike, IKE_SA *sa);
void PurgeDeletingSAsAndClients(IKE_SERVER *ike);
void PurgeIPsecSa(IKE_SERVER *ike, IPSECSA *sa);
void PurgeIkeSa(IKE_SERVER *ike, IKE_SA *sa);
void PurgeIkeClient(IKE_SERVER *ike, IKE_CLIENT *c);
void FreeIPsecSa(IPSECSA *sa);
void MarkIkeClientAsDeleted(IKE_SERVER *ike, IKE_CLIENT *c);
IKE_SA *GetOtherLatestIkeSa(IKE_SERVER *ike, IKE_SA *sa);
IPSECSA *GetOtherLatestIPsecSa(IKE_SERVER *ike, IPSECSA *sa);
void SendInformationalExchangePacket(IKE_SERVER *ike, IKE_CLIENT *c, IKE_PACKET_PAYLOAD *payload);
void SendInformationalExchangePacketEx(IKE_SERVER *ike, IKE_CLIENT *c, IKE_PACKET_PAYLOAD *payload, bool force_plain, UINT64 init_cookie, UINT64 resp_cookie);
void SendDeleteIkeSaPacket(IKE_SERVER *ike, IKE_CLIENT *c, UINT64 init_cookie, UINT64 resp_cookie);
void SendDeleteIPsecSaPacket(IKE_SERVER *ike, IKE_CLIENT *c, UINT spi);
void IPsecCalcKeymat(IKE_SERVER *ike, IKE_HASH *h, void *dst, UINT dst_size, void *skeyid_d_data, UINT skeyid_d_size, UCHAR protocol, UINT spi, void *rand_init_data, UINT rand_init_size,
void *rand_resp_data, UINT rand_resp_size, void *df_key_data, UINT df_key_size);
void ProcIPsecEspPacketRecv(IKE_SERVER *ike, UDPPACKET *p);
void ProcIPsecUdpPacketRecv(IKE_SERVER *ike, IKE_CLIENT *c, UCHAR *data, UINT data_size);
void IPsecSendPacketByIPsecSa(IKE_SERVER *ike, IPSECSA *sa, UCHAR *data, UINT data_size, UCHAR protocol_id);
void IPsecSendPacketByIPsecSaInner(IKE_SERVER *ike, IPSECSA *sa, UCHAR *data, UINT data_size, UCHAR protocol_id);
void IPsecSendPacketByIkeClient(IKE_SERVER *ike, IKE_CLIENT *c, UCHAR *data, UINT data_size, UCHAR protocol_id);
void IPsecSendUdpPacket(IKE_SERVER *ike, IKE_CLIENT *c, UINT src_port, UINT dst_port, UCHAR *data, UINT data_size);
void IPsecIkeClientManageL2TPServer(IKE_SERVER *ike, IKE_CLIENT *c);
void IPsecIkeClientSendL2TPPackets(IKE_SERVER *ike, IKE_CLIENT *c, L2TP_SERVER *l2tp);
void IPsecIkeSendUdpForDebug(UINT dst_port, UINT dst_ip, void *data, UINT size);
void StartQuickMode(IKE_SERVER *ike, IKE_CLIENT *c);
UINT GenerateNewMessageId(IKE_SERVER *ike);
void IPsecIkeClientManageEtherIPServer(IKE_SERVER *ike, IKE_CLIENT *c);
void IPsecIkeClientSendEtherIPPackets(IKE_SERVER *ike, IKE_CLIENT *c, ETHERIP_SERVER *s);
void ProcIPsecEtherIPPacketRecv(IKE_SERVER *ike, IKE_CLIENT *c, UCHAR *data, UINT data_size, bool is_tunnel_mode);
bool IsIPsecSaTunnelMode(IPSECSA *sa);
void ProcL2TPv3PacketRecv(IKE_SERVER *ike, IKE_CLIENT *c, UCHAR *data, UINT data_size, bool is_tunnel_mode);
IKE_SA *SearchIkeSaByCookie(IKE_SERVER *ike, UINT64 init_cookie, UINT64 resp_cookie);
#endif // IPSEC_IKE_H
// Developed by SoftEther VPN Project at University of Tsukuba in Japan.
// Department of Computer Science has dozens of overly-enthusiastic geeks.
// Join us: http://www.tsukuba.ac.jp/english/admission/