1
0
mirror of https://github.com/SoftEtherVPN/SoftEtherVPN.git synced 2024-11-10 03:30:39 +03:00
SoftEtherVPN/src/Cedar/IPsec_IkePacket.c

3160 lines
62 KiB
C
Raw Normal View History

2014-01-04 17:00:08 +04:00
// SoftEther VPN Source Code
// Cedar Communication Module
//
// SoftEther VPN Server, Client and Bridge are free software under GPLv2.
//
2016-03-06 17:16:01 +03:00
// Copyright (c) 2012-2016 Daiyuu Nobori.
// Copyright (c) 2012-2016 SoftEther VPN Project, University of Tsukuba, Japan.
// Copyright (c) 2012-2016 SoftEther Corporation.
2014-01-04 17:00:08 +04:00
//
// All Rights Reserved.
//
// http://www.softether.org/
//
// Author: Daiyuu Nobori
// Comments: Tetsuo Sugiyama, Ph.D.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// version 2 as published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License version 2
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// THE LICENSE AGREEMENT IS ATTACHED ON THE SOURCE-CODE PACKAGE
// AS "LICENSE.TXT" FILE. READ THE TEXT FILE IN ADVANCE TO USE THE SOFTWARE.
//
//
// THIS SOFTWARE IS DEVELOPED IN JAPAN, AND DISTRIBUTED FROM JAPAN,
// UNDER JAPANESE LAWS. YOU MUST AGREE IN ADVANCE TO USE, COPY, MODIFY,
// MERGE, PUBLISH, DISTRIBUTE, SUBLICENSE, AND/OR SELL COPIES OF THIS
// SOFTWARE, THAT ANY JURIDICAL DISPUTES WHICH ARE CONCERNED TO THIS
// SOFTWARE OR ITS CONTENTS, AGAINST US (SOFTETHER PROJECT, SOFTETHER
// CORPORATION, DAIYUU NOBORI OR OTHER SUPPLIERS), OR ANY JURIDICAL
// DISPUTES AGAINST US WHICH ARE CAUSED BY ANY KIND OF USING, COPYING,
// MODIFYING, MERGING, PUBLISHING, DISTRIBUTING, SUBLICENSING, AND/OR
// SELLING COPIES OF THIS SOFTWARE SHALL BE REGARDED AS BE CONSTRUED AND
// CONTROLLED BY JAPANESE LAWS, AND YOU MUST FURTHER CONSENT TO
// EXCLUSIVE JURISDICTION AND VENUE IN THE COURTS SITTING IN TOKYO,
// JAPAN. YOU MUST WAIVE ALL DEFENSES OF LACK OF PERSONAL JURISDICTION
// AND FORUM NON CONVENIENS. PROCESS MAY BE SERVED ON EITHER PARTY IN
// THE MANNER AUTHORIZED BY APPLICABLE LAW OR COURT RULE.
//
2014-07-11 21:06:20 +04:00
// USE ONLY IN JAPAN. DO NOT USE THIS SOFTWARE IN ANOTHER COUNTRY UNLESS
// YOU HAVE A CONFIRMATION THAT THIS SOFTWARE DOES NOT VIOLATE ANY
// CRIMINAL LAWS OR CIVIL RIGHTS IN THAT PARTICULAR COUNTRY. USING THIS
// SOFTWARE IN OTHER COUNTRIES IS COMPLETELY AT YOUR OWN RISK. THE
// SOFTETHER VPN PROJECT HAS DEVELOPED AND DISTRIBUTED THIS SOFTWARE TO
// COMPLY ONLY WITH THE JAPANESE LAWS AND EXISTING CIVIL RIGHTS INCLUDING
// PATENTS WHICH ARE SUBJECTS APPLY IN JAPAN. OTHER COUNTRIES' LAWS OR
// CIVIL RIGHTS ARE NONE OF OUR CONCERNS NOR RESPONSIBILITIES. WE HAVE
// NEVER INVESTIGATED ANY CRIMINAL REGULATIONS, CIVIL LAWS OR
// INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENTS IN ANY OF OTHER 200+
// COUNTRIES AND TERRITORIES. BY NATURE, THERE ARE 200+ REGIONS IN THE
// WORLD, WITH DIFFERENT LAWS. IT IS IMPOSSIBLE TO VERIFY EVERY
// COUNTRIES' LAWS, REGULATIONS AND CIVIL RIGHTS TO MAKE THE SOFTWARE
// COMPLY WITH ALL COUNTRIES' LAWS BY THE PROJECT. EVEN IF YOU WILL BE
// SUED BY A PRIVATE ENTITY OR BE DAMAGED BY A PUBLIC SERVANT IN YOUR
// COUNTRY, THE DEVELOPERS OF THIS SOFTWARE WILL NEVER BE LIABLE TO
// RECOVER OR COMPENSATE SUCH DAMAGES, CRIMINAL OR CIVIL
// RESPONSIBILITIES. NOTE THAT THIS LINE IS NOT LICENSE RESTRICTION BUT
// JUST A STATEMENT FOR WARNING AND DISCLAIMER.
2014-01-04 17:00:08 +04:00
//
//
2014-01-15 13:01:42 +04:00
// SOURCE CODE CONTRIBUTION
// ------------------------
//
// Your contribution to SoftEther VPN Project is much appreciated.
// Please send patches to us through GitHub.
// Read the SoftEther VPN Patch Acceptance Policy in advance:
// http://www.softether.org/5-download/src/9.patch
//
//
2014-01-04 17:00:08 +04:00
// DEAR SECURITY EXPERTS
// ---------------------
//
// If you find a bug or a security vulnerability please kindly inform us
// about the problem immediately so that we can fix the security problem
// to protect a lot of users around the world as soon as possible.
//
// Our e-mail address for security reports is:
// softether-vpn-security [at] softether.org
//
// Please note that the above e-mail address is not a technical support
// inquiry address. If you need technical assistance, please visit
// http://www.softether.org/ and ask your question on the users forum.
//
// Thank you for your cooperation.
2014-03-20 00:45:05 +04:00
//
//
// NO MEMORY OR RESOURCE LEAKS
// ---------------------------
//
// The memory-leaks and resource-leaks verification under the stress
// test has been passed before release this source code.
2014-01-04 17:00:08 +04:00
// IPsec_IkePacket.c
// IKE (ISAKMP) packet processing
#include "CedarPch.h"
// Convert the string to a password
BUF *IkeStrToPassword(char *str)
{
BUF *b;
// Validate arguments
if (str == NULL)
{
return NewBuf();
}
if (StartWith(str, "0x") == false)
{
// Accept the string as is
b = NewBuf();
WriteBuf(b, str, StrLen(str));
}
else
{
// Interpret as a hexadecimal value
b = StrToBin(str + 2);
}
return b;
}
// Phase 1: Convert the encryption algorithm name to key size
UINT IkePhase1CryptIdToKeySize(UCHAR id)
{
switch (id)
{
case IKE_P1_CRYPTO_3DES_CBC:
return DES3_KEY_SIZE;
case IKE_P1_CRYPTO_DES_CBC:
return DES_KEY_SIZE;
}
return 0;
}
// Phase 2: Convert the encryption algorithm name to key size
UINT IkePhase2CryptIdToKeySize(UCHAR id)
{
switch (id)
{
case IKE_TRANSFORM_ID_P2_ESP_3DES:
return DES3_KEY_SIZE;
case IKE_TRANSFORM_ID_P2_ESP_DES:
return DES_KEY_SIZE;
}
return 0;
}
// Convert a string to an algorithm name
UCHAR IkeStrToPhase1CryptId(char *name)
{
if (StartWith(name, "3DES") || StartWith("3DES", name))
{
return IKE_P1_CRYPTO_3DES_CBC;
}
else if (StartWith(name, "DES") || StartWith("DES", name))
{
return IKE_P1_CRYPTO_DES_CBC;
}
else
{
return 0;
}
}
UCHAR IkeStrToPhase1HashId(char *name)
{
if (StartWith(name, "SHA-1") || StartWith("SHA-1", name))
{
return IKE_P1_HASH_SHA1;
}
return 0;
}
UCHAR IkeStrToPhase2CryptId(char *name)
{
if (StartWith(name, "3DES") || StartWith("3DES", name))
{
return IKE_TRANSFORM_ID_P2_ESP_3DES;
}
else if (StartWith(name, "DES") || StartWith("DES", name))
{
return IKE_TRANSFORM_ID_P2_ESP_DES;
}
else
{
return 0;
}
}
UCHAR IkeStrToPhase2HashId(char *name)
{
if (StartWith(name, "SHA-1") || StartWith("SHA-1", name))
{
return IKE_P2_HMAC_SHA1_96;
}
return 0;
}
// Build a data payload
BUF *IkeBuildDataPayload(IKE_PACKET_DATA_PAYLOAD *t)
{
BUF *b;
// Validate arguments
if (t == NULL)
{
return NULL;
}
b = NewBuf();
WriteBuf(b, t->Data->Buf, t->Data->Size);
return b;
}
// Build a SA payload
BUF *IkeBuildSaPayload(IKE_PACKET_SA_PAYLOAD *t)
{
IKE_SA_HEADER h;
BUF *ret;
BUF *b;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.DoI = Endian32(IKE_SA_DOI_IPSEC);
h.Situation = Endian32(IKE_SA_SITUATION_IDENTITY);
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
b = IkeBuildPayloadList(t->PayloadList);
WriteBufBuf(ret, b);
FreeBuf(b);
return ret;
}
// Build a proposal payload
BUF *IkeBuildProposalPayload(IKE_PACKET_PROPOSAL_PAYLOAD *t)
{
IKE_PROPOSAL_HEADER h;
BUF *ret, *b;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.Number = t->Number;
h.NumTransforms = LIST_NUM(t->PayloadList);
h.ProtocolId = t->ProtocolId;
h.SpiSize = t->Spi->Size;
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
WriteBufBuf(ret, t->Spi);
b = IkeBuildPayloadList(t->PayloadList);
WriteBufBuf(ret, b);
FreeBuf(b);
return ret;
}
// Build the transform value list
BUF *IkeBuildTransformValueList(LIST *o)
{
BUF *b;
UINT i;
// Validate arguments
if (o == NULL)
{
return NULL;
}
b = NewBuf();
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_TRANSFORM_VALUE *v = LIST_DATA(o, i);
BUF *tmp = IkeBuildTransformValue(v);
WriteBufBuf(b, tmp);
FreeBuf(tmp);
}
return b;
}
// Build a transform value
BUF *IkeBuildTransformValue(IKE_PACKET_TRANSFORM_VALUE *v)
{
BUF *b;
UCHAR af_bit, type;
USHORT size_or_value;
// Validate arguments
if (v == NULL)
{
return NULL;
}
type = v->Type;
if (v->Value >= 65536)
{
// 32 bit
af_bit = 0;
size_or_value = Endian16(sizeof(UINT));
}
else
{
// 16 bit
af_bit = 0x80;
size_or_value = Endian16((USHORT)v->Value);
}
b = NewBuf();
WriteBuf(b, &af_bit, sizeof(af_bit));
WriteBuf(b, &type, sizeof(type));
WriteBuf(b, &size_or_value, sizeof(size_or_value));
if (af_bit == 0)
{
UINT value = Endian32(v->Value);
WriteBuf(b, &value, sizeof(UINT));
}
return b;
}
// Build a transform payload
BUF *IkeBuildTransformPayload(IKE_PACKET_TRANSFORM_PAYLOAD *t)
{
IKE_TRANSFORM_HEADER h;
BUF *ret, *b;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.Number = t->Number;
h.TransformId = t->TransformId;
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
b = IkeBuildTransformValueList(t->ValueList);
WriteBufBuf(ret, b);
FreeBuf(b);
return ret;
}
// Get the value from the transform payload
UINT IkeGetTransformValue(IKE_PACKET_TRANSFORM_PAYLOAD *t, UINT type, UINT index)
{
UINT i;
UINT num;
// Validate arguments
if (t == NULL)
{
return 0;
}
num = 0;
for (i = 0;i < LIST_NUM(t->ValueList);i++)
{
IKE_PACKET_TRANSFORM_VALUE *v = LIST_DATA(t->ValueList, i);
if (v->Type == type)
{
if (num == index)
{
return v->Value;
}
num++;
}
}
return 0;
}
// Get the number of values from the transform payload
UINT IkeGetTransformValueNum(IKE_PACKET_TRANSFORM_PAYLOAD *t, UINT type)
{
UINT i;
UINT num;
// Validate arguments
if (t == NULL)
{
return 0;
}
num = 0;
for (i = 0;i < LIST_NUM(t->ValueList);i++)
{
IKE_PACKET_TRANSFORM_VALUE *v = LIST_DATA(t->ValueList, i);
if (v->Type == type)
{
num++;
}
}
return num;
}
// Build the ID payload
BUF *IkeBuildIdPayload(IKE_PACKET_ID_PAYLOAD *t)
{
IKE_ID_HEADER h;
BUF *ret;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.IdType = t->Type;
h.Port = Endian16(t->Port);
h.ProtocolId = t->ProtocolId;
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
WriteBufBuf(ret, t->IdData);
return ret;
}
// Build a certificate payload
BUF *IkeBuildCertPayload(IKE_PACKET_CERT_PAYLOAD *t)
{
IKE_CERT_HEADER h;
BUF *ret;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.CertType = t->CertType;
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
WriteBufBuf(ret, t->CertData);
return ret;
}
// Build a certificate request payload
BUF *IkeBuildCertRequestPayload(IKE_PACKET_CERT_REQUEST_PAYLOAD *t)
{
IKE_CERT_REQUEST_HEADER h;
BUF *ret;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.CertType = t->CertType;
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
WriteBufBuf(ret, t->Data);
return ret;
}
// Build a notification payload
BUF *IkeBuildNoticePayload(IKE_PACKET_NOTICE_PAYLOAD *t)
{
IKE_NOTICE_HEADER h;
BUF *ret;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.DoI = Endian32(IKE_SA_DOI_IPSEC);
h.MessageType = Endian16(t->MessageType);
h.ProtocolId = t->ProtocolId;
h.SpiSize = t->Spi->Size;
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
WriteBuf(ret, t->Spi->Buf, t->Spi->Size);
if (t->MessageData != NULL)
{
WriteBuf(ret, t->MessageData->Buf, t->MessageData->Size);
}
return ret;
}
// Build a NAT-OA payload
BUF *IkeBuildNatOaPayload(IKE_PACKET_NAT_OA_PAYLOAD *t)
{
IKE_NAT_OA_HEADER h;
BUF *ret;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
if (IsIP6(&t->IpAddress))
{
h.IdType = IKE_ID_IPV6_ADDR;
}
else
{
h.IdType = IKE_ID_IPV4_ADDR;
}
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
if (IsIP6(&t->IpAddress))
{
WriteBuf(ret, t->IpAddress.ipv6_addr, 16);
}
else
{
WriteBuf(ret, t->IpAddress.addr, 4);
}
return ret;
}
// Build a deletion payload
BUF *IkeBuildDeletePayload(IKE_PACKET_DELETE_PAYLOAD *t)
{
IKE_DELETE_HEADER h;
BUF *ret;
UINT i;
// Validate arguments
if (t == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.DoI = Endian32(IKE_SA_DOI_IPSEC);
h.NumSpis = Endian16(LIST_NUM(t->SpiList));
h.ProtocolId = t->ProtocolId;
if (LIST_NUM(t->SpiList) >= 1)
{
BUF *b = LIST_DATA(t->SpiList, 0);
h.SpiSize = b->Size;
}
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
for (i = 0;i < LIST_NUM(t->SpiList);i++)
{
BUF *b = LIST_DATA(t->SpiList, i);
WriteBuf(ret, b->Buf, b->Size);
}
return ret;
}
// Build a bit array from the payload
BUF *IkeBuildPayload(IKE_PACKET_PAYLOAD *p)
{
BUF *b = NULL;
// Validate arguments
if (p == NULL)
{
return NULL;
}
switch (p->PayloadType)
{
case IKE_PAYLOAD_SA: // SA payload
b = IkeBuildSaPayload(&p->Payload.Sa);
break;
case IKE_PAYLOAD_PROPOSAL: // Proposal payload
b = IkeBuildProposalPayload(&p->Payload.Proposal);
break;
case IKE_PAYLOAD_TRANSFORM: // Transform payload
b = IkeBuildTransformPayload(&p->Payload.Transform);
break;
case IKE_PAYLOAD_ID: // ID payload
b = IkeBuildIdPayload(&p->Payload.Id);
break;
case IKE_PAYLOAD_CERT: // Certificate payload
b = IkeBuildCertPayload(&p->Payload.Cert);
break;
case IKE_PAYLOAD_CERT_REQUEST: // Certificate request payload
b = IkeBuildCertRequestPayload(&p->Payload.CertRequest);
break;
case IKE_PAYLOAD_NOTICE: // Notification Payload
b = IkeBuildNoticePayload(&p->Payload.Notice);
break;
case IKE_PAYLOAD_DELETE: // Deletion payload
b = IkeBuildDeletePayload(&p->Payload.Delete);
break;
case IKE_PAYLOAD_NAT_OA: // NAT-OA payload
case IKE_PAYLOAD_NAT_OA_DRAFT:
case IKE_PAYLOAD_NAT_OA_DRAFT_2:
b = IkeBuildNatOaPayload(&p->Payload.NatOa);
break;
case IKE_PAYLOAD_KEY_EXCHANGE: // Key exchange payload
case IKE_PAYLOAD_HASH: // Hash payload
case IKE_PAYLOAD_SIGN: // Signature payload
case IKE_PAYLOAD_RAND: // Random number payload
case IKE_PAYLOAD_VENDOR_ID: // Vendor ID payload
case IKE_PAYLOAD_NAT_D: // NAT-D payload
case IKE_PAYLOAD_NAT_D_DRAFT: // NAT-D payload (draft)
default:
b = IkeBuildDataPayload(&p->Payload.GeneralData);
break;
}
if (b != NULL)
{
if (p->BitArray != NULL)
{
FreeBuf(p->BitArray);
}
p->BitArray = CloneBuf(b);
}
return b;
}
// Get the payload type of the first item
UCHAR IkeGetFirstPayloadType(LIST *o)
{
IKE_PACKET_PAYLOAD *p;
// Validate arguments
if (o == NULL)
{
return IKE_PAYLOAD_NONE;
}
if (LIST_NUM(o) == 0)
{
return IKE_PAYLOAD_NONE;
}
p = (IKE_PACKET_PAYLOAD *)LIST_DATA(o, 0);
return p->PayloadType;
}
// Build a bit array from the payload list
BUF *IkeBuildPayloadList(LIST *o)
{
BUF *b;
UINT i;
// Validate arguments
if (o == NULL)
{
return NULL;
}
b = NewBuf();
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_PAYLOAD *p = LIST_DATA(o, i);
IKE_PACKET_PAYLOAD *next = NULL;
IKE_COMMON_HEADER h;
BUF *tmp;
if (i < (LIST_NUM(o) - 1))
{
next = LIST_DATA(o, i + 1);
}
Zero(&h, sizeof(h));
if (next != NULL)
{
h.NextPayload = next->PayloadType;
}
else
{
h.NextPayload = IKE_PAYLOAD_NONE;
}
tmp = IkeBuildPayload(p);
if (tmp != NULL)
{
h.PayloadSize = Endian16(tmp->Size + (USHORT)sizeof(h));
WriteBuf(b, &h, sizeof(h));
WriteBuf(b, tmp->Buf, tmp->Size);
FreeBuf(tmp);
}
}
SeekBuf(b, 0, 0);
return b;
}
// Get the specified payload
IKE_PACKET_PAYLOAD *IkeGetPayload(LIST *o, UINT payload_type, UINT index)
{
UINT i, num;
IKE_PACKET_PAYLOAD *ret = NULL;
// Validate arguments
if (o == NULL)
{
return 0;
}
num = 0;
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_PAYLOAD *p = LIST_DATA(o, i);
if (p->PayloadType == payload_type)
{
if (num == index)
{
ret = p;
break;
}
num++;
}
}
return ret;
}
// Get the number of the payload of the specified type
UINT IkeGetPayloadNum(LIST *o, UINT payload_type)
{
UINT i, num;
// Validate arguments
if (o == NULL)
{
return 0;
}
num = 0;
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_PAYLOAD *p = LIST_DATA(o, i);
if (p->PayloadType == payload_type)
{
num++;
}
}
return num;
}
// Create a deletion payload
IKE_PACKET_PAYLOAD *IkeNewDeletePayload(UCHAR protocol_id, LIST *spi_list)
{
IKE_PACKET_PAYLOAD *p;
if (spi_list == NULL)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_DELETE);
p->Payload.Delete.ProtocolId = protocol_id;
p->Payload.Delete.SpiList = spi_list;
return p;
}
// Create a Notification payload
IKE_PACKET_PAYLOAD *IkeNewNoticePayload(UCHAR protocol_id, USHORT message_type,
void *spi, UINT spi_size,
void *message, UINT message_size)
{
IKE_PACKET_PAYLOAD *p;
if (spi == NULL && spi_size != 0)
{
return NULL;
}
if (message == NULL && message_size != 0)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_NOTICE);
p->Payload.Notice.MessageType = message_type;
p->Payload.Notice.MessageData = MemToBuf(message, message_size);
p->Payload.Notice.Spi = MemToBuf(spi, spi_size);
p->Payload.Notice.ProtocolId = protocol_id;
return p;
}
// Create a Invalid Cookie Payload
IKE_PACKET_PAYLOAD *IkeNewNoticeErrorInvalidCookiePayload(UINT64 init_cookie, UINT64 resp_cookie)
{
IKE_PACKET_PAYLOAD *ret;
BUF *b = NewBuf();
WriteBufInt64(b, init_cookie);
WriteBufInt64(b, resp_cookie);
ret = IkeNewNoticePayload(IKE_PROTOCOL_ID_IKE, IKE_NOTICE_ERROR_INVALID_COOKIE, b->Buf, b->Size,
b->Buf, b->Size);
FreeBuf(b);
return ret;
}
// Create an Invalid Exchange Type Payload
IKE_PACKET_PAYLOAD *IkeNewNoticeErrorInvalidExchangeTypePayload(UINT64 init_cookie, UINT64 resp_cookie, UCHAR exchange_type)
{
IKE_PACKET_PAYLOAD *ret;
BUF *b = NewBuf();
WriteBufInt64(b, init_cookie);
WriteBufInt64(b, resp_cookie);
ret = IkeNewNoticePayload(IKE_PROTOCOL_ID_IKE, IKE_NOTICE_ERROR_INVALID_EXCHANGE_TYPE, b->Buf, b->Size,
&exchange_type, 1);
FreeBuf(b);
return ret;
}
// Create an Invalid SPI payload
IKE_PACKET_PAYLOAD *IkeNewNoticeErrorInvalidSpiPayload(UINT spi)
{
IKE_PACKET_PAYLOAD *ret;
spi = Endian32(spi);
ret = IkeNewNoticePayload(IKE_PROTOCOL_ID_IPSEC_ESP, IKE_NOTICE_ERROR_INVALID_SPI, &spi, sizeof(UINT),
&spi, sizeof(UINT));
return ret;
}
// Create a No Proposal Chosen payload
IKE_PACKET_PAYLOAD *IkeNewNoticeErrorNoProposalChosenPayload(bool quick_mode, UINT64 init_cookie, UINT64 resp_cookie)
{
BUF *b = NewBuf();
IKE_PACKET_PAYLOAD *ret;
WriteBufInt64(b, init_cookie);
WriteBufInt64(b, resp_cookie);
ret = IkeNewNoticePayload((quick_mode ? IKE_PROTOCOL_ID_IPSEC_ESP : IKE_PROTOCOL_ID_IKE),
IKE_NOTICE_ERROR_NO_PROPOSAL_CHOSEN, b->Buf, b->Size,
NULL, 0);
FreeBuf(b);
return ret;
}
// Create a DPD payload
IKE_PACKET_PAYLOAD *IkeNewNoticeDpdPayload(bool ack, UINT64 init_cookie, UINT64 resp_cookie, UINT seq_no)
{
IKE_PACKET_PAYLOAD *ret;
BUF *b = NewBuf();
seq_no = Endian32(seq_no);
WriteBufInt64(b, init_cookie);
WriteBufInt64(b, resp_cookie);
ret = IkeNewNoticePayload(IKE_PROTOCOL_ID_IKE, (ack ? IKE_NOTICE_DPD_RESPONSE : IKE_NOTICE_DPD_REQUEST),
b->Buf, b->Size,
&seq_no, sizeof(UINT));
FreeBuf(b);
return ret;
}
// Create a Certificate Request Payload
IKE_PACKET_PAYLOAD *IkeNewCertRequestPayload(UCHAR cert_type, void *data, UINT size)
{
IKE_PACKET_PAYLOAD *p;
if (data == NULL && size != 0)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_CERT_REQUEST);
p->Payload.CertRequest.CertType = cert_type;
p->Payload.CertRequest.Data = MemToBuf(data, size);
return p;
}
// Create a Certificate payload
IKE_PACKET_PAYLOAD *IkeNewCertPayload(UCHAR cert_type, void *cert_data, UINT cert_size)
{
IKE_PACKET_PAYLOAD *p;
if (cert_data == NULL && cert_size != 0)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_CERT);
p->Payload.Cert.CertType = cert_type;
p->Payload.Cert.CertData = MemToBuf(cert_data, cert_size);
return p;
}
// Create an ID payload
IKE_PACKET_PAYLOAD *IkeNewIdPayload(UCHAR id_type, UCHAR protocol_id, USHORT port, void *id_data, UINT id_size)
{
IKE_PACKET_PAYLOAD *p;
if (id_data == NULL && id_size != 0)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_ID);
p->Payload.Id.IdData = MemToBuf(id_data, id_size);
p->Payload.Id.Port = port;
p->Payload.Id.ProtocolId = protocol_id;
p->Payload.Id.Type = id_type;
return p;
}
// Create a transform payload
IKE_PACKET_PAYLOAD *IkeNewTransformPayload(UCHAR number, UCHAR transform_id, LIST *value_list)
{
IKE_PACKET_PAYLOAD *p;
if (value_list == NULL)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_TRANSFORM);
p->Payload.Transform.Number = number;
p->Payload.Transform.TransformId = transform_id;
p->Payload.Transform.ValueList = value_list;
return p;
}
// Create a proposal payload
IKE_PACKET_PAYLOAD *IkeNewProposalPayload(UCHAR number, UCHAR protocol_id, void *spi, UINT spi_size, LIST *payload_list)
{
IKE_PACKET_PAYLOAD *p;
if (payload_list == NULL || (spi == NULL && spi_size != 0))
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_PROPOSAL);
p->Payload.Proposal.Number = number;
p->Payload.Proposal.ProtocolId = protocol_id;
p->Payload.Proposal.Spi = MemToBuf(spi, spi_size);
p->Payload.Proposal.PayloadList = payload_list;
return p;
}
// Create an SA payload
IKE_PACKET_PAYLOAD *IkeNewSaPayload(LIST *payload_list)
{
IKE_PACKET_PAYLOAD *p;
// Validate arguments
if (payload_list == NULL)
{
return NULL;
}
p = IkeNewPayload(IKE_PAYLOAD_SA);
p->Payload.Sa.PayloadList = payload_list;
return p;
}
// Create a NAT-OA payload
IKE_PACKET_PAYLOAD *IkeNewNatOaPayload(UCHAR payload_type, IP *ip)
{
IKE_PACKET_PAYLOAD *p;
// Validate arguments
if (ip == NULL)
{
return NULL;
}
p = IkeNewPayload(payload_type);
Copy(&p->Payload.NatOa.IpAddress, ip, sizeof(IP));
p->PayloadType = payload_type;
return p;
}
// Create a data payload
IKE_PACKET_PAYLOAD *IkeNewDataPayload(UCHAR payload_type, void *data, UINT size)
{
IKE_PACKET_PAYLOAD *p;
// Validate arguments
if (data == NULL)
{
return NULL;
}
p = IkeNewPayload(payload_type);
p->Payload.GeneralData.Data = MemToBuf(data, size);
return p;
}
// Create a new payload
IKE_PACKET_PAYLOAD *IkeNewPayload(UINT payload_type)
{
IKE_PACKET_PAYLOAD *p;
p = ZeroMalloc(sizeof(IKE_PACKET_PAYLOAD));
p->PayloadType = payload_type;
return p;
}
// Analyse the IKE payload body
IKE_PACKET_PAYLOAD *IkeParsePayload(UINT payload_type, BUF *b)
{
IKE_PACKET_PAYLOAD *p = NULL;
bool ok = true;
// Validate arguments
if (b == NULL)
{
return NULL;
}
p = ZeroMalloc(sizeof(IKE_PACKET_PAYLOAD));
p->PayloadType = payload_type;
switch (p->PayloadType)
{
case IKE_PAYLOAD_SA: // SA payload
ok = IkeParseSaPayload(&p->Payload.Sa, b);
break;
case IKE_PAYLOAD_PROPOSAL: // Proposal payload
ok = IkeParseProposalPayload(&p->Payload.Proposal, b);
break;
case IKE_PAYLOAD_TRANSFORM: // Proposal payload
ok = IkeParseTransformPayload(&p->Payload.Transform, b);
break;
case IKE_PAYLOAD_ID: // ID payload
ok = IkeParseIdPayload(&p->Payload.Id, b);
break;
case IKE_PAYLOAD_CERT: // Certificate payload
ok = IkeParseCertPayload(&p->Payload.Cert, b);
break;
case IKE_PAYLOAD_CERT_REQUEST: // Certificate request payload
ok = IkeParseCertRequestPayload(&p->Payload.CertRequest, b);
break;
case IKE_PAYLOAD_NOTICE: // Notification Payload
ok = IkeParseNoticePayload(&p->Payload.Notice, b);
break;
case IKE_PAYLOAD_DELETE: // Deletion payload
ok = IkeParseDeletePayload(&p->Payload.Delete, b);
break;
case IKE_PAYLOAD_NAT_OA:
case IKE_PAYLOAD_NAT_OA_DRAFT:
case IKE_PAYLOAD_NAT_OA_DRAFT_2:
ok = IkeParseNatOaPayload(&p->Payload.NatOa, b);
break;
case IKE_PAYLOAD_KEY_EXCHANGE: // Key exchange payload
case IKE_PAYLOAD_HASH: // Hash payload
case IKE_PAYLOAD_SIGN: // Signature payload
case IKE_PAYLOAD_RAND: // Random number payload
case IKE_PAYLOAD_VENDOR_ID: // Vendor ID payload
case IKE_PAYLOAD_NAT_D: // NAT-D payload
case IKE_PAYLOAD_NAT_D_DRAFT: // NAT-D payload (draft)
default:
ok = IkeParseDataPayload(&p->Payload.GeneralData, b);
break;
}
if (ok == false)
{
Free(p);
p = NULL;
}
else
{
p->BitArray = CloneBuf(b);
}
return p;
}
// Parse the SA payload
bool IkeParseSaPayload(IKE_PACKET_SA_PAYLOAD *t, BUF *b)
{
IKE_SA_HEADER *h;
UCHAR *buf;
UINT size;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (b->Size < sizeof(IKE_SA_HEADER))
{
return false;
}
h = (IKE_SA_HEADER *)b->Buf;
buf = (UCHAR *)b->Buf;
buf += sizeof(IKE_SA_HEADER);
size = b->Size - sizeof(IKE_SA_HEADER);
if (Endian32(h->DoI) != IKE_SA_DOI_IPSEC)
{
Debug("ISAKMP: Invalid DoI Value: 0x%x\n", Endian32(h->DoI));
return false;
}
if (Endian32(h->Situation) != IKE_SA_SITUATION_IDENTITY)
{
Debug("ISAKMP: Invalid Situation Value: 0x%x\n", Endian32(h->Situation));
return false;
}
t->PayloadList = IkeParsePayloadList(buf, size, IKE_PAYLOAD_PROPOSAL);
return true;
}
// Release the SA payload
void IkeFreeSaPayload(IKE_PACKET_SA_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->PayloadList != NULL)
{
IkeFreePayloadList(t->PayloadList);
t->PayloadList = NULL;
}
}
// Parse the proposal payload
bool IkeParseProposalPayload(IKE_PACKET_PROPOSAL_PAYLOAD *t, BUF *b)
{
IKE_PROPOSAL_HEADER *h;
UCHAR *buf;
UINT size;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (b->Size < sizeof(IKE_PROPOSAL_HEADER))
{
return false;
}
h = (IKE_PROPOSAL_HEADER *)b->Buf;
t->Number = h->Number;
t->ProtocolId = h->ProtocolId;
buf = (UCHAR *)b->Buf;
buf += sizeof(IKE_PROPOSAL_HEADER);
size = b->Size - sizeof(IKE_PROPOSAL_HEADER);
if (size < (UINT)h->SpiSize)
{
return false;
}
t->Spi = MemToBuf(buf, h->SpiSize);
buf += h->SpiSize;
size -= h->SpiSize;
t->PayloadList = IkeParsePayloadList(buf, size, IKE_PAYLOAD_TRANSFORM);
return true;
}
// Release the proposal payload
void IkeFreeProposalPayload(IKE_PACKET_PROPOSAL_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->Spi != NULL)
{
FreeBuf(t->Spi);
t->Spi = NULL;
}
if (t->PayloadList != NULL)
{
IkeFreePayloadList(t->PayloadList);
t->PayloadList = NULL;
}
}
// Parse the transform payload
bool IkeParseTransformPayload(IKE_PACKET_TRANSFORM_PAYLOAD *t, BUF *b)
{
IKE_TRANSFORM_HEADER h;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
t->Number = h.Number;
t->TransformId = h.TransformId;
t->ValueList = IkeParseTransformValueList(b);
return true;
}
// Create a new transform value
IKE_PACKET_TRANSFORM_VALUE *IkeNewTransformValue(UCHAR type, UINT value)
{
IKE_PACKET_TRANSFORM_VALUE *v = ZeroMalloc(sizeof(IKE_PACKET_TRANSFORM_VALUE));
v->Type = type;
v->Value = value;
return v;
}
// Parse the transform value list
LIST *IkeParseTransformValueList(BUF *b)
{
LIST *o;
bool ok = true;
// Validate arguments
if (b == NULL)
{
return NULL;
}
o = NewListFast(NULL);
while (b->Current < b->Size)
{
UCHAR af_bit, type;
USHORT size;
UINT value = 0;
IKE_PACKET_TRANSFORM_VALUE *v;
if (ReadBuf(b, &af_bit, sizeof(af_bit)) != sizeof(af_bit))
{
ok = false;
break;
}
if (ReadBuf(b, &type, sizeof(type)) != sizeof(type))
{
ok = false;
break;
}
if (ReadBuf(b, &size, sizeof(size)) != sizeof(size))
{
ok = false;
}
size = Endian16(size);
if (af_bit == 0)
{
UCHAR *tmp = Malloc(size);
if (ReadBuf(b, tmp, size) != size)
{
ok = false;
Free(tmp);
break;
}
switch (size)
{
case sizeof(UINT):
value = READ_UINT(tmp);
break;
case sizeof(USHORT):
value = READ_USHORT(tmp);
break;
case sizeof(UCHAR):
value = *((UCHAR *)tmp);
break;
}
Free(tmp);
}
else
{
value = (UINT)size;
}
v = ZeroMalloc(sizeof(IKE_PACKET_TRANSFORM_VALUE));
v->Type = type;
v->Value = value;
Add(o, v);
}
if (ok == false)
{
IkeFreeTransformValueList(o);
o = NULL;
}
return o;
}
// Release the transform value list
void IkeFreeTransformValueList(LIST *o)
{
UINT i;
// Validate arguments
if (o == NULL)
{
return;
}
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_TRANSFORM_VALUE *v = LIST_DATA(o, i);
Free(v);
}
ReleaseList(o);
}
// Release the transform payload
void IkeFreeTransformPayload(IKE_PACKET_TRANSFORM_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->ValueList != NULL)
{
IkeFreeTransformValueList(t->ValueList);
t->ValueList = NULL;
}
}
// Parse the ID payload
bool IkeParseIdPayload(IKE_PACKET_ID_PAYLOAD *t, BUF *b)
{
IKE_ID_HEADER h;
IP ip;
IP subnet;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
t->Type = h.IdType;
t->ProtocolId = h.ProtocolId;
t->Port = Endian16(h.Port);
t->IdData = ReadRemainBuf(b);
if (t->IdData == NULL)
{
return false;
}
Zero(&ip, sizeof(ip));
Zero(&subnet, sizeof(subnet));
// Convert to string
Zero(t->StrData, sizeof(t->StrData));
switch (t->Type)
{
case IKE_ID_FQDN:
case IKE_ID_USER_FQDN:
case IKE_ID_KEY_ID:
Copy(t->StrData, t->IdData->Buf, MIN(t->IdData->Size, sizeof(t->StrData) - 1));
break;
case IKE_ID_IPV4_ADDR:
if (t->IdData->Size == 4)
{
Copy(ip.addr, t->IdData->Buf, 4);
IPToStr(t->StrData, sizeof(t->StrData), &ip);
}
break;
case IKE_ID_IPV6_ADDR:
if (t->IdData->Size == 16)
{
SetIP6(&ip, t->IdData->Buf);
IPToStr(t->StrData, sizeof(t->StrData), &ip);
}
break;
case IKE_ID_IPV4_ADDR_SUBNET:
if (t->IdData->Size == 8)
{
char ipstr[MAX_SIZE];
char subnetstr[MAX_SIZE];
Copy(ip.addr, t->IdData->Buf, 4);
Copy(subnet.addr, ((UCHAR *)t->IdData->Buf) + 4, 4);
IPToStr(ipstr, sizeof(ipstr), &ip);
MaskToStr(subnetstr, sizeof(subnetstr), &subnet);
Format(t->StrData, sizeof(t->StrData), "%s/%s", ipstr, subnetstr);
}
break;
case IKE_ID_IPV6_ADDR_SUBNET:
if (t->IdData->Size == 32)
{
char ipstr[MAX_SIZE];
char subnetstr[MAX_SIZE];
SetIP6(&ip, t->IdData->Buf);
SetIP6(&subnet, ((UCHAR *)t->IdData->Buf) + 16);
IPToStr(ipstr, sizeof(ipstr), &ip);
MaskToStr(subnetstr, sizeof(subnetstr), &subnet);
Format(t->StrData, sizeof(t->StrData), "%s/%s", ipstr, subnetstr);
}
break;
}
return true;
}
// Release the ID payload
void IkeFreeIdPayload(IKE_PACKET_ID_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->IdData != NULL)
{
FreeBuf(t->IdData);
t->IdData = NULL;
}
}
// Parse the certificate payload
bool IkeParseCertPayload(IKE_PACKET_CERT_PAYLOAD *t, BUF *b)
{
IKE_CERT_HEADER h;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
t->CertType = h.CertType;
t->CertData = ReadRemainBuf(b);
if (t->CertData == NULL)
{
return false;
}
return true;
}
// Release the certificate payload
void IkeFreeCertPayload(IKE_PACKET_CERT_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->CertData != NULL)
{
FreeBuf(t->CertData);
t->CertData = NULL;
}
}
// Parse the certificate request payload
bool IkeParseCertRequestPayload(IKE_PACKET_CERT_REQUEST_PAYLOAD *t, BUF *b)
{
IKE_CERT_REQUEST_HEADER h;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
t->CertType = h.CertType;
t->Data = ReadRemainBuf(b);
if (t->Data == NULL)
{
return false;
}
return true;
}
// Release the certificate request payload
void IkeFreeCertRequestPayload(IKE_PACKET_CERT_REQUEST_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->Data != NULL)
{
FreeBuf(t->Data);
t->Data = NULL;
}
}
// Parse the notification payload
bool IkeParseNoticePayload(IKE_PACKET_NOTICE_PAYLOAD *t, BUF *b)
{
IKE_NOTICE_HEADER h;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
if (Endian32(h.DoI) != IKE_SA_DOI_IPSEC)
{
Debug("ISAKMP: Invalid DoI Value: 0x%x\n", Endian32(h.DoI));
return false;
}
t->MessageType = Endian16(h.MessageType);
t->ProtocolId = h.ProtocolId;
t->Spi = ReadBufFromBuf(b, h.SpiSize);
if (t->Spi == NULL)
{
return false;
}
t->MessageData = ReadRemainBuf(b);
return true;
}
// Release the notification payload
void IkeFreeNoticePayload(IKE_PACKET_NOTICE_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
if (t->MessageData != NULL)
{
FreeBuf(t->MessageData);
t->MessageData = NULL;
}
if (t->Spi != NULL)
{
FreeBuf(t->Spi);
t->Spi = NULL;
}
}
// Parse the NAT-OA payload
bool IkeParseNatOaPayload(IKE_PACKET_NAT_OA_PAYLOAD *t, BUF *b)
{
IKE_NAT_OA_HEADER h;
UCHAR ip4[4];
UCHAR ip6[16];
IP ip;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
Zero(&ip, sizeof(ip));
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
if (h.IdType != IKE_ID_IPV4_ADDR && h.IdType != IKE_ID_IPV6_ADDR)
{
return false;
}
switch (h.IdType)
{
case IKE_ID_IPV4_ADDR: // IPv4
if (ReadBuf(b, ip4, sizeof(ip4)) != sizeof(ip4))
{
return false;
}
SetIP(&ip, ip4[0], ip4[1], ip4[2], ip4[3]);
break;
case IKE_ID_IPV6_ADDR: // IPv6
if (ReadBuf(b, ip6, sizeof(ip6)) != sizeof(ip6))
{
return false;
}
SetIP6(&ip, ip6);
break;
default:
return false;
}
Copy(&t->IpAddress, &ip, sizeof(IP));
return true;
}
// Parse the deletion payload
bool IkeParseDeletePayload(IKE_PACKET_DELETE_PAYLOAD *t, BUF *b)
{
IKE_DELETE_HEADER h;
UINT num_spi;
UINT spi_size;
UINT i;
bool ok = true;
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
if (ReadBuf(b, &h, sizeof(h)) != sizeof(h))
{
return false;
}
if (Endian32(h.DoI) != IKE_SA_DOI_IPSEC)
{
Debug("ISAKMP: Invalid DoI Value: 0x%x\n", Endian32(h.DoI));
return false;
}
t->ProtocolId = h.ProtocolId;
t->SpiList = NewListFast(NULL);
num_spi = Endian16(h.NumSpis);
spi_size = h.SpiSize;
for (i = 0;i < num_spi;i++)
{
BUF *spi = ReadBufFromBuf(b, spi_size);
if (spi == NULL)
{
ok = false;
break;
}
Add(t->SpiList, spi);
}
if (ok == false)
{
IkeFreeDeletePayload(t);
return false;
}
return true;
}
// Release the deletion payload
void IkeFreeDeletePayload(IKE_PACKET_DELETE_PAYLOAD *t)
{
UINT i;
// Validate arguments
if (t == NULL)
{
return;
}
if (t->SpiList != NULL)
{
for (i = 0;i < LIST_NUM(t->SpiList);i++)
{
BUF *spi = LIST_DATA(t->SpiList, i);
FreeBuf(spi);
}
ReleaseList(t->SpiList);
t->SpiList = NULL;
}
}
// Check whether the hash matches
bool IkeCompareHash(IKE_PACKET_PAYLOAD *hash_payload, void *hash_data, UINT hash_size)
{
//char tmp1[MAX_SIZE], tmp2[MAX_SIZE];
// Validate arguments
if (hash_payload == NULL || hash_data == NULL || hash_size == 0)
{
return false;
}
if (hash_payload->PayloadType != IKE_PAYLOAD_HASH)
{
return false;
}
if (hash_payload->Payload.Hash.Data == NULL)
{
return false;
}
if (hash_payload->Payload.Hash.Data->Size != hash_size)
{
return false;
}
//BinToStrEx(tmp1, sizeof(tmp1), hash_payload->Payload.Hash.Data->Buf, hash_size);
//BinToStrEx(tmp2, sizeof(tmp2), hash_data, hash_size);
//Debug("IkeCompareHash\n 1: %s\n 2: %s\n", tmp1, tmp2);
if (Cmp(hash_payload->Payload.Hash.Data->Buf, hash_data, hash_size) != 0)
{
return false;
}
return true;
}
// Parse the data payload
bool IkeParseDataPayload(IKE_PACKET_DATA_PAYLOAD *t, BUF *b)
{
// Validate arguments
if (t == NULL || b == NULL)
{
return false;
}
t->Data = MemToBuf(b->Buf, b->Size);
return true;
}
// Release the data payload
void IkeFreeDataPayload(IKE_PACKET_DATA_PAYLOAD *t)
{
// Validate arguments
if (t == NULL)
{
return;
}
FreeBuf(t->Data);
}
// Release the IKE payload body
void IkeFreePayload(IKE_PACKET_PAYLOAD *p)
{
// Validate arguments
if (p == NULL)
{
return;
}
switch (p->PayloadType)
{
case IKE_PAYLOAD_SA: // SA payload
IkeFreeSaPayload(&p->Payload.Sa);
break;
case IKE_PAYLOAD_PROPOSAL: // Proposal payload
IkeFreeProposalPayload(&p->Payload.Proposal);
break;
case IKE_PAYLOAD_TRANSFORM: // Proposal payload
IkeFreeTransformPayload(&p->Payload.Transform);
break;
case IKE_PAYLOAD_ID: // ID payload
IkeFreeIdPayload(&p->Payload.Id);
break;
case IKE_PAYLOAD_CERT: // Certificate payload
IkeFreeCertPayload(&p->Payload.Cert);
break;
case IKE_PAYLOAD_CERT_REQUEST: // Certificate request payload
IkeFreeCertRequestPayload(&p->Payload.CertRequest);
break;
case IKE_PAYLOAD_NOTICE: // Notification Payload
IkeFreeNoticePayload(&p->Payload.Notice);
break;
case IKE_PAYLOAD_DELETE: // Deletion payload
IkeFreeDeletePayload(&p->Payload.Delete);
break;
case IKE_PAYLOAD_NAT_OA: // NAT-OD payload
case IKE_PAYLOAD_NAT_OA_DRAFT:
case IKE_PAYLOAD_NAT_OA_DRAFT_2:
// Do Nothing
break;
case IKE_PAYLOAD_KEY_EXCHANGE: // Key exchange payload
case IKE_PAYLOAD_HASH: // Hash payload
case IKE_PAYLOAD_SIGN: // Signature payload
case IKE_PAYLOAD_RAND: // Random number payload
case IKE_PAYLOAD_VENDOR_ID: // Vendor ID payload
case IKE_PAYLOAD_NAT_D: // NAT-D payload
case IKE_PAYLOAD_NAT_D_DRAFT: // NAT-D payload (draft)
default:
IkeFreeDataPayload(&p->Payload.GeneralData);
break;
}
if (p->BitArray != NULL)
{
FreeBuf(p->BitArray);
}
Free(p);
}
// Analyse the IKE payload list
LIST *IkeParsePayloadList(void *data, UINT size, UCHAR first_payload)
{
return IkeParsePayloadListEx(data, size, first_payload, NULL);
}
LIST *IkeParsePayloadListEx(void *data, UINT size, UCHAR first_payload, UINT *total_read_size)
{
LIST *o;
BUF *b;
UCHAR payload_type = first_payload;
UINT total = 0;
// Validate arguments
if (data == NULL)
{
return NULL;
}
o = NewListFast(NULL);
b = MemToBuf(data, size);
while (payload_type != IKE_PAYLOAD_NONE)
{
// Read the common header
IKE_COMMON_HEADER header;
USHORT payload_size;
BUF *payload_data;
IKE_PACKET_PAYLOAD *pay;
if (ReadBuf(b, &header, sizeof(header)) != sizeof(header))
{
Debug("ISAKMP: Broken Packet (Invalid Payload Size)\n");
LABEL_ERROR:
// Header reading failure
IkeFreePayloadList(o);
o = NULL;
break;
}
total += sizeof(header);
// Get the payload size
payload_size = Endian16(header.PayloadSize);
if (payload_size < sizeof(header))
{
Debug("ISAKMP: Broken Packet (Invalid Payload Size)\n");
goto LABEL_ERROR;
}
payload_size -= sizeof(header);
// Read the payload data
payload_data = ReadBufFromBuf(b, payload_size);
if (payload_data == NULL)
{
// Data read failure
Debug("ISAKMP: Broken Packet (Invalid Payload Data)\n");
goto LABEL_ERROR;
}
total += payload_size;
// Analyse the payload body
if (IKE_IS_SUPPORTED_PAYLOAD_TYPE(payload_type))
{
// Supported payload type
pay = IkeParsePayload(payload_type, payload_data);
if (pay == NULL)
{
FreeBuf(payload_data);
Debug("ISAKMP: Broken Packet (Payload Data Parse Failed)\n");
goto LABEL_ERROR;
}
Add(o, pay);
}
else
{
// Unsupported payload type
Debug("ISAKMP: Ignored Payload Type: %u\n", payload_type);
pay = IkeParsePayload(payload_type, payload_data);
if (pay == NULL)
{
FreeBuf(payload_data);
Debug("ISAKMP: Broken Packet (Payload Data Parse Failed)\n");
goto LABEL_ERROR;
}
Add(o, pay);
}
payload_type = header.NextPayload;
FreeBuf(payload_data);
}
FreeBuf(b);
if (total_read_size != NULL)
{
*total_read_size = total;
}
return o;
}
// Release the IKE payload list
void IkeFreePayloadList(LIST *o)
{
UINT i;
// Validate arguments
if (o == NULL)
{
return;
}
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_PAYLOAD *p = LIST_DATA(o, i);
IkeFreePayload(p);
}
ReleaseList(o);
}
// Build an IKE packet
BUF *IkeBuild(IKE_PACKET *p, IKE_CRYPTO_PARAM *cparam)
{
return IkeBuildEx(p, cparam, false);
}
BUF *IkeBuildEx(IKE_PACKET *p, IKE_CRYPTO_PARAM *cparam, bool use_original_decrypted)
{
IKE_HEADER h;
BUF *msg_buf;
BUF *ret;
// Validate arguments
if (p == NULL)
{
return NULL;
}
if (p->PayloadList == NULL)
{
return NULL;
}
Zero(&h, sizeof(h));
h.InitiatorCookie = Endian64(p->InitiatorCookie);
h.ResponderCookie = Endian64(p->ResponderCookie);
h.NextPayload = IkeGetFirstPayloadType(p->PayloadList);
h.Version = IKE_VERSION;
h.ExchangeType = p->ExchangeType;
h.Flag = (p->FlagEncrypted ? IKE_HEADER_FLAG_ENCRYPTED : 0) |
(p->FlagCommit ? IKE_HEADER_FLAG_COMMIT : 0) |
(p->FlagAuthOnly ? IKE_HEADER_FLAG_AUTH_ONLY : 0);
h.MessageId = Endian32(p->MessageId);
if (p->DecryptedPayload != NULL && use_original_decrypted)
{
msg_buf = CloneBuf(p->DecryptedPayload);
}
else
{
msg_buf = IkeBuildPayloadList(p->PayloadList);
}
if (p->DecryptedPayload != NULL)
{
FreeBuf(p->DecryptedPayload);
}
p->DecryptedPayload = CloneBuf(msg_buf);
if (p->FlagEncrypted)
{
BUF *b;
// Encryption
b = IkeEncryptWithPadding(msg_buf->Buf, msg_buf->Size, cparam);
if (b == NULL)
{
Debug("ISAKMP: Packet Encrypt Failed\n");
FreeBuf(msg_buf);
return NULL;
}
FreeBuf(msg_buf);
msg_buf = b;
}
h.MessageSize = Endian32(msg_buf->Size + sizeof(h));
ret = NewBuf();
WriteBuf(ret, &h, sizeof(h));
WriteBufBuf(ret, msg_buf);
FreeBuf(msg_buf);
SeekBuf(ret, 0, 0);
return ret;
}
// Analyse the IKE packet
IKE_PACKET *IkeParseEx(void *data, UINT size, IKE_CRYPTO_PARAM *cparam, bool header_only)
{
IKE_PACKET *p = NULL;
BUF *b;
// Validate arguments
if (data == NULL)
{
return NULL;
}
b = MemToBuf(data, size);
if (b->Size < sizeof(IKE_HEADER))
{
Debug("ISAKMP: Invalid Packet Size\n");
}
else
{
// Header analysis
IKE_HEADER *h = (IKE_HEADER *)b->Buf;
p = ZeroMalloc(sizeof(IKE_PACKET));
p->MessageSize = Endian32(h->MessageSize);
p->InitiatorCookie = Endian64(h->InitiatorCookie);
p->ResponderCookie = Endian64(h->ResponderCookie);
p->ExchangeType = h->ExchangeType;
p->FlagEncrypted = (h->Flag & IKE_HEADER_FLAG_ENCRYPTED) ? true : false;
p->FlagCommit = (h->Flag & IKE_HEADER_FLAG_COMMIT) ? true : false;
p->FlagAuthOnly = (h->Flag & IKE_HEADER_FLAG_AUTH_ONLY) ? true : false;
p->MessageId = Endian32(h->MessageId);
if (b->Size < Endian32(h->MessageSize) ||
Endian32(h->MessageSize) < sizeof(IKE_HEADER))
{
Debug("ISAKMP: Invalid Packet Size\n");
IkeFree(p);
p = NULL;
}
else
{
if (header_only == false)
{
bool ok = false;
UCHAR *payload_data;
UINT payload_size;
BUF *buf = NULL;
payload_data = ((UCHAR *)h) + sizeof(IKE_HEADER);
payload_size = Endian32(h->MessageSize) - sizeof(IKE_HEADER);
// Decrypt if it is encrypted
if (p->FlagEncrypted)
{
buf = IkeDecrypt(payload_data, payload_size, cparam);
if (buf != NULL)
{
ok = true;
payload_data = buf->Buf;
payload_size = buf->Size;
p->DecryptedPayload = CloneBuf(buf);
}
}
else
{
ok = true;
}
if (ok == false)
{
Debug("ISAKMP: Decrypt Failed\n");
IkeFree(p);
p = NULL;
}
else
{
UINT total_read_size;
// Payload analysis
p->PayloadList = IkeParsePayloadListEx(payload_data,
payload_size,
h->NextPayload,
&total_read_size);
if (p->DecryptedPayload != NULL)
{
p->DecryptedPayload->Size = MIN(p->DecryptedPayload->Size, total_read_size);
}
else
{
p->DecryptedPayload = MemToBuf(payload_data, payload_size);
}
}
if (buf != NULL)
{
FreeBuf(buf);
}
}
}
}
FreeBuf(b);
return p;
}
IKE_PACKET *IkeParseHeader(void *data, UINT size, IKE_CRYPTO_PARAM *cparam)
{
return IkeParseEx(data, size, cparam, true);
}
IKE_PACKET *IkeParse(void *data, UINT size, IKE_CRYPTO_PARAM *cparam)
{
return IkeParseEx(data, size, cparam, false);
}
// Send packet for debugging by UDP (For debugging with Ethereal)
void IkeDebugUdpSendRawPacket(IKE_PACKET *p)
{
BUF *b;
IP ip;
SOCK *udp;
// Validate arguments
if (p == NULL)
{
return;
}
p->FlagEncrypted = false;
b = NULL;
if (b == NULL)
{
b = IkeBuildEx(p, NULL, true);
}
if (b == NULL)
{
return;
}
Zero(&ip, sizeof(ip));
SetIP(&ip, 1, 2, 3, 4);
udp = NewUDP(0);
SendTo(udp, &ip, 500, b->Buf, b->Size);
ReleaseSock(udp);
FreeBuf(b);
}
// Output the payload list
void IkeDebugPrintPayloads(LIST *o, UINT depth)
{
UINT i;
char space[MAX_SIZE];
// Validate arguments
if (o == NULL)
{
return;
}
MakeCharArray2(space, ' ', depth * 2);
for (i = 0;i < LIST_NUM(o);i++)
{
IKE_PACKET_PAYLOAD *payload = LIST_DATA(o, i);
Debug("%s%u: Type = %u, Size = %u\n", space, i, payload->PayloadType, payload->BitArray->Size);
switch (payload->PayloadType)
{
case IKE_PAYLOAD_SA:
IkeDebugPrintPayloads(payload->Payload.Sa.PayloadList, depth + 1);
break;
case IKE_PAYLOAD_PROPOSAL:
IkeDebugPrintPayloads(payload->Payload.Proposal.PayloadList, depth + 1);
break;
}
}
}
// Encryption (also with padding)
BUF *IkeEncryptWithPadding(void *data, UINT size, IKE_CRYPTO_PARAM *cparam)
{
UINT total_size;
UINT i;
UCHAR n = 0;
UCHAR *tmp;
BUF *ret;
UCHAR tmp1600[1600];
bool no_free = false;
// Validate arguments
if (data == NULL || cparam == NULL)
{
return NULL;
}
total_size = ((size / cparam->Key->Crypto->BlockSize) + ((size % cparam->Key->Crypto->BlockSize) == 0 ? 0 : 1))
* cparam->Key->Crypto->BlockSize;
if (total_size == 0)
{
total_size = cparam->Key->Crypto->BlockSize;
}
if (total_size > sizeof(tmp1600))
{
tmp = Malloc(total_size);
}
else
{
tmp = tmp1600;
no_free = true;
}
Copy(tmp, data, size);
for (i = size;i < total_size;i++)
{
tmp[i] = ++n;
}
ret = IkeEncrypt(tmp, total_size, cparam);
if (no_free == false)
{
Free(tmp);
}
return ret;
}
// Encryption
BUF *IkeEncrypt(void *data, UINT size, IKE_CRYPTO_PARAM *cparam)
{
void *tmp;
BUF *b;
UCHAR tmp1600[1600];
bool no_free = false;
// Validate arguments
if (data == NULL || cparam == NULL)
{
return NULL;
}
if ((size % cparam->Key->Crypto->BlockSize) != 0)
{
// Not an integral multiple of block size
return NULL;
}
if (size > sizeof(tmp1600))
{
tmp = Malloc(size);
}
else
{
tmp = tmp1600;
no_free = true;
}
IkeCryptoEncrypt(cparam->Key, tmp, data, size, cparam->Iv);
if (size >= cparam->Key->Crypto->BlockSize)
{
Copy(cparam->NextIv, ((UCHAR *)tmp) + (size - cparam->Key->Crypto->BlockSize), cparam->Key->Crypto->BlockSize);
}
else
{
Zero(cparam->NextIv, cparam->Key->Crypto->BlockSize);
}
b = MemToBuf(tmp, size);
if (no_free == false)
{
Free(tmp);
}
return b;
}
// Decryption
BUF *IkeDecrypt(void *data, UINT size, IKE_CRYPTO_PARAM *cparam)
{
void *tmp;
BUF *b;
UCHAR tmp1600[1600];
bool no_free = false;
// Validate arguments
if (data == NULL || cparam == NULL)
{
return NULL;
}
if ((size % cparam->Key->Crypto->BlockSize) != 0)
{
// Not an integral multiple of block size
return NULL;
}
if (size > sizeof(tmp1600))
{
tmp = Malloc(size);
}
else
{
tmp = tmp1600;
no_free = true;
}
IkeCryptoDecrypt(cparam->Key, tmp, data, size, cparam->Iv);
if (size >= cparam->Key->Crypto->BlockSize)
{
Copy(cparam->NextIv, ((UCHAR *)data) + (size - cparam->Key->Crypto->BlockSize), cparam->Key->Crypto->BlockSize);
}
else
{
Zero(cparam->NextIv, cparam->Key->Crypto->BlockSize);
}
b = MemToBuf(tmp, size);
if (no_free == false)
{
Free(tmp);
}
return b;
}
// Release the IKE packet
void IkeFree(IKE_PACKET *p)
{
// Validate arguments
if (p == NULL)
{
return;
}
if (p->PayloadList != NULL)
{
IkeFreePayloadList(p->PayloadList);
}
if (p->DecryptedPayload != NULL)
{
FreeBuf(p->DecryptedPayload);
}
Free(p);
}
// Create an IKE packet
IKE_PACKET *IkeNew(UINT64 init_cookie, UINT64 resp_cookie, UCHAR exchange_type,
bool encrypted, bool commit, bool auth_only, UINT msg_id,
LIST *payload_list)
{
IKE_PACKET *p = ZeroMalloc(sizeof(IKE_PACKET));
p->InitiatorCookie = init_cookie;
p->ResponderCookie = resp_cookie;
p->ExchangeType = exchange_type;
p->FlagEncrypted = encrypted;
p->FlagCommit = commit;
p->FlagAuthOnly = auth_only;
p->MessageId = msg_id;
p->PayloadList = payload_list;
return p;
}
// Create a new SPI value
UINT IkeNewSpi()
{
while (true)
{
UINT i = Rand32();
if (i >= 4096)
{
return i;
}
}
}
// Create an encryption engine for IKE
IKE_ENGINE *NewIkeEngine()
{
IKE_ENGINE *e = ZeroMalloc(sizeof(IKE_ENGINE));
IKE_CRYPTO *des, *des3, *aes;
IKE_HASH *sha1, *md5;
IKE_DH *dh1, *dh2, *dh5;
UINT des_key_sizes[] =
{
8,
};
UINT des3_key_sizes[] =
{
24,
};
UINT aes_key_sizes[] =
{
16, 24, 32,
};
e->CryptosList = NewListFast(NULL);
e->HashesList = NewListFast(NULL);
e->DhsList = NewListFast(NULL);
//// Encryption algorithm
// DES
des = NewIkeCrypto(e, IKE_CRYPTO_DES_ID, IKE_CRYPTO_DES_STRING,
des_key_sizes, sizeof(des_key_sizes) / sizeof(UINT), 8);
// 3DES
des3 = NewIkeCrypto(e, IKE_CRYPTO_3DES_ID, IKE_CRYPTO_3DES_STRING,
des3_key_sizes, sizeof(des3_key_sizes) / sizeof(UINT), 8);
// AES
aes = NewIkeCrypto(e, IKE_CRYPTO_AES_ID, IKE_CRYPTO_AES_STRING,
aes_key_sizes, sizeof(aes_key_sizes) / sizeof(UINT), 16);
//// Hash algorithm
// SHA-1
sha1 = NewIkeHash(e, IKE_HASH_SHA1_ID, IKE_HASH_SHA1_STRING, 20);
// MD5
md5 = NewIkeHash(e, IKE_HASH_MD5_ID, IKE_HASH_MD5_STRING, 16);
//// DH algorithm
dh1 = NewIkeDh(e, IKE_DH_1_ID, IKE_DH_1_STRING, 96);
dh2 = NewIkeDh(e, IKE_DH_2_ID, IKE_DH_2_STRING, 128);
dh5 = NewIkeDh(e, IKE_DH_5_ID, IKE_DH_5_STRING, 192);
// Define the IKE algorithm
e->IkeCryptos[IKE_P1_CRYPTO_DES_CBC] = des;
e->IkeCryptos[IKE_P1_CRYPTO_3DES_CBC] = des3;
e->IkeCryptos[IKE_P1_CRYPTO_AES_CBC] = aes;
e->IkeHashes[IKE_P1_HASH_MD5] = md5;
e->IkeHashes[IKE_P1_HASH_SHA1] = sha1;
// Definition of ESP algorithm
e->EspCryptos[IKE_TRANSFORM_ID_P2_ESP_DES] = des;
e->EspCryptos[IKE_TRANSFORM_ID_P2_ESP_3DES] = des3;
e->EspCryptos[IKE_TRANSFORM_ID_P2_ESP_AES] = aes;
e->EspHashes[IKE_P2_HMAC_MD5_96] = md5;
e->EspHashes[IKE_P2_HMAC_SHA1_96] = sha1;
// Definition of the DH algorithm
e->IkeDhs[IKE_P1_DH_GROUP_768_MODP] = e->EspDhs[IKE_P2_DH_GROUP_768_MODP] = dh1;
e->IkeDhs[IKE_P1_DH_GROUP_1024_MODP] = e->EspDhs[IKE_P2_DH_GROUP_1024_MODP] = dh2;
e->IkeDhs[IKE_P1_DH_GROUP_1536_MODP] = e->EspDhs[IKE_P2_DH_GROUP_1536_MODP] = dh5;
return e;
}
// Release the encryption engine for IKE
void FreeIkeEngine(IKE_ENGINE *e)
{
UINT i;
// Validate arguments
if (e == NULL)
{
return;
}
for (i = 0;i < LIST_NUM(e->CryptosList);i++)
{
IKE_CRYPTO *c = LIST_DATA(e->CryptosList, i);
FreeIkeCrypto(c);
}
ReleaseList(e->CryptosList);
for (i = 0;i < LIST_NUM(e->HashesList);i++)
{
IKE_HASH *h = LIST_DATA(e->HashesList, i);
FreeIkeHash(h);
}
ReleaseList(e->HashesList);
for (i = 0;i < LIST_NUM(e->DhsList);i++)
{
IKE_DH *d = LIST_DATA(e->DhsList, i);
FreeIkeDh(d);
}
ReleaseList(e->DhsList);
Free(e);
}
// Definition of a new DH algorithm for IKE
IKE_DH *NewIkeDh(IKE_ENGINE *e, UINT dh_id, char *name, UINT key_size)
{
IKE_DH *d;
// Validate arguments
if (e == NULL || name == NULL || key_size == 0)
{
return NULL;
}
d = ZeroMalloc(sizeof(IKE_DH));
d->DhId = dh_id;
d->Name = name;
d->KeySize = key_size;
Add(e->DhsList, d);
return d;
}
// Definition of a new encryption algorithm for IKE
IKE_CRYPTO *NewIkeCrypto(IKE_ENGINE *e, UINT crypto_id, char *name, UINT *key_sizes, UINT num_key_sizes, UINT block_size)
{
IKE_CRYPTO *c;
UINT i;
// Validate arguments
if (e == NULL || name == NULL || key_sizes == NULL)
{
return NULL;
}
c = ZeroMalloc(sizeof(IKE_CRYPTO));
c->CryptoId = crypto_id;
c->Name = name;
for (i = 0;i < MIN(num_key_sizes, 16);i++)
{
c->KeySizes[i] = key_sizes[i];
}
if (num_key_sizes >= 2)
{
c->VariableKeySize = true;
}
c->BlockSize = block_size;
Add(e->CryptosList, c);
return c;
}
// Release the definition of Encryption algorithm for IKE
void FreeIkeCrypto(IKE_CRYPTO *c)
{
// Validate arguments
if (c == NULL)
{
return;
}
Free(c);
}
// Release the definition of IKE hash algorithm
void FreeIkeHash(IKE_HASH *h)
{
// Validate arguments
if (h == NULL)
{
return;
}
Free(h);
}
// Release the definition of the DH algorithm for IKE
void FreeIkeDh(IKE_DH *d)
{
// Validate arguments
if (d == NULL)
{
return;
}
Free(d);
}
// Definition of a new hash algorithm for IKE
IKE_HASH *NewIkeHash(IKE_ENGINE *e, UINT hash_id, char *name, UINT size)
{
IKE_HASH *h;
// Validate arguments
if (e == NULL || name == NULL || size == 0)
{
return NULL;
}
h = ZeroMalloc(sizeof(IKE_HASH));
h->HashId = hash_id;
h->Name = name;
h->HashSize = size;
Add(e->HashesList, h);
return h;
}
// Get the encryption algorithm that is used in IKE
IKE_CRYPTO *GetIkeCrypto(IKE_ENGINE *e, bool for_esp, UINT i)
{
// Validate arguments
if (e == NULL || i == 0 || i >= MAX_IKE_ENGINE_ELEMENTS)
{
return NULL;
}
if (for_esp)
{
return e->EspCryptos[i];
}
else
{
return e->IkeCryptos[i];
}
}
// Get the hash algorithm used in the IKE
IKE_HASH *GetIkeHash(IKE_ENGINE *e, bool for_esp, UINT i)
{
// Validate arguments
if (e == NULL || i == 0 || i >= MAX_IKE_ENGINE_ELEMENTS)
{
return NULL;
}
if (for_esp)
{
return e->EspHashes[i];
}
else
{
return e->IkeHashes[i];
}
}
// Get the DH algorithm used in the IKE
IKE_DH *GetIkeDh(IKE_ENGINE *e, bool for_esp, UINT i)
{
// Validate arguments
if (e == NULL || i == 0 || i >= MAX_IKE_ENGINE_ELEMENTS)
{
return NULL;
}
if (for_esp)
{
return e->EspDhs[i];
}
else
{
return e->IkeDhs[i];
}
}
// Perform encryption
void IkeCryptoEncrypt(IKE_CRYPTO_KEY *k, void *dst, void *src, UINT size, void *ivec)
{
// Validate arguments
if (k == NULL || dst == NULL || src == NULL || size == 0 || ivec == NULL)
{
Zero(dst, size);
return;
}
if ((size % k->Crypto->BlockSize) != 0)
{
Zero(dst, size);
return;
}
switch (k->Crypto->CryptoId)
{
case IKE_CRYPTO_DES_ID: // DES
DesEncrypt(dst, src, size, k->DesKey1, ivec);
break;
case IKE_CRYPTO_3DES_ID: // 3DES
Des3Encrypt2(dst, src, size, k->DesKey1, k->DesKey2, k->DesKey3, ivec);
break;
case IKE_CRYPTO_AES_ID: // AES
AesEncrypt(dst, src, size, k->AesKey, ivec);
break;
default:
// Unknown
Zero(dst, size);
break;
}
}
// Perform decryption
void IkeCryptoDecrypt(IKE_CRYPTO_KEY *k, void *dst, void *src, UINT size, void *ivec)
{
// Validate arguments
if (k == NULL || dst == NULL || src == NULL || size == 0 || ivec == NULL)
{
Zero(dst, size);
return;
}
if ((size % k->Crypto->BlockSize) != 0)
{
Zero(dst, size);
return;
}
switch (k->Crypto->CryptoId)
{
case IKE_CRYPTO_DES_ID: // DES
DesDecrypt(dst, src, size, k->DesKey1, ivec);
break;
case IKE_CRYPTO_3DES_ID: // 3DES
Des3Decrypt2(dst, src, size, k->DesKey1, k->DesKey2, k->DesKey3, ivec);
break;
case IKE_CRYPTO_AES_ID: // AES
AesDecrypt(dst, src, size, k->AesKey, ivec);
break;
default:
// Unknown
Zero(dst, size);
break;
}
}
// Calculate a hash
void IkeHash(IKE_HASH *h, void *dst, void *src, UINT size)
{
// Validate arguments
if (h == NULL || dst == NULL || (size != 0 && src == NULL))
{
Zero(dst, size);
return;
}
switch (h->HashId)
{
case IKE_HASH_MD5_ID:
// MD5
Md5(dst, src, size);
break;
case IKE_HASH_SHA1_ID:
// SHA-1
Sha1(dst, src, size);
break;
default:
// Unknown
Zero(dst, size);
break;
}
}
// Calculation of HMAC
void IkeHMac(IKE_HASH *h, void *dst, void *key, UINT key_size, void *data, UINT data_size)
{
UCHAR k[HMAC_BLOCK_SIZE];
UCHAR *data1;
UCHAR hash1[IKE_MAX_HASH_SIZE];
UINT data1_size;
UCHAR data2[IKE_MAX_HASH_SIZE + HMAC_BLOCK_SIZE];
UINT data2_size;
UCHAR tmp1600[1600];
bool no_free = false;
UINT i;
// Validate arguments
if (h == NULL || dst == NULL || (key == NULL && key_size != 0) || (data == NULL && data_size != 0))
{
return;
}
if (h->HashId == IKE_HASH_SHA1_ID)
{
// Use special function (fast) in the case of SHA-1
HMacSha1(dst, key, key_size, data, data_size);
return;
}
else if (h->HashId == IKE_HASH_MD5_ID)
{
// Use the special function (fast) in the case of MD5
HMacMd5(dst, key, key_size, data, data_size);
return;
}
// Creating a K
Zero(k, sizeof(k));
if (key_size <= HMAC_BLOCK_SIZE)
{
Copy(k, key, key_size);
}
else
{
IkeHash(h, k, key, key_size);
}
// Generation of data 1
data1_size = data_size + HMAC_BLOCK_SIZE;
if (data1_size > sizeof(tmp1600))
{
data1 = Malloc(data1_size);
}
else
{
data1 = tmp1600;
no_free = true;
}
for (i = 0;i < HMAC_BLOCK_SIZE;i++)
{
data1[i] = k[i] ^ 0x36;
}
Copy(data1 + HMAC_BLOCK_SIZE, data, data_size);
// Calculate the hash value
IkeHash(h, hash1, data1, data1_size);
if (no_free == false)
{
Free(data1);
}
// Generation of data 2
data2_size = h->HashSize + HMAC_BLOCK_SIZE;
for (i = 0;i < HMAC_BLOCK_SIZE;i++)
{
data2[i] = k[i] ^ 0x5c;
}
Copy(data2 + HMAC_BLOCK_SIZE, hash1, h->HashSize);
// Calculate the hash value
IkeHash(h, dst, data2, data2_size);
}
void IkeHMacBuf(IKE_HASH *h, void *dst, BUF *key, BUF *data)
{
// Validate arguments
if (h == NULL || dst == NULL || key == NULL || data == NULL)
{
return;
}
IkeHMac(h, dst, key->Buf, key->Size, data->Buf, data->Size);
}
// Check whether the key size is valid
bool IkeCheckKeySize(IKE_CRYPTO *c, UINT size)
{
bool ok = false;
UINT i;
// Validate arguments
if (c == NULL || size == 0)
{
return false;
}
for (i = 0;i < sizeof(c->KeySizes) / sizeof(UINT);i++)
{
if (c->KeySizes[i] == size)
{
ok = true;
break;
}
}
return ok;
}
// Create a key
IKE_CRYPTO_KEY *IkeNewKey(IKE_CRYPTO *c, void *data, UINT size)
{
IKE_CRYPTO_KEY *k;
// Validate arguments
if (c == NULL || data == NULL || size == 0)
{
return NULL;
}
if (IkeCheckKeySize(c, size) == false)
{
return NULL;
}
k = ZeroMalloc(sizeof(IKE_CRYPTO_KEY));
k->Crypto = c;
k->Data = Clone(data, size);
k->Size = size;
switch (k->Crypto->CryptoId)
{
case IKE_CRYPTO_DES_ID:
// DES 64bit key
k->DesKey1 = DesNewKeyValue(data);
break;
case IKE_CRYPTO_3DES_ID:
// 3DES 192bit key
k->DesKey1 = DesNewKeyValue(((UCHAR *)data) + DES_KEY_SIZE * 0);
k->DesKey2 = DesNewKeyValue(((UCHAR *)data) + DES_KEY_SIZE * 1);
k->DesKey3 = DesNewKeyValue(((UCHAR *)data) + DES_KEY_SIZE * 2);
break;
case IKE_CRYPTO_AES_ID:
// AES variable length key
k->AesKey = AesNewKey(data, size);
break;
}
return k;
}
// Release the key
void IkeFreeKey(IKE_CRYPTO_KEY *k)
{
// Validate arguments
if (k == NULL)
{
return;
}
DesFreeKeyValue(k->DesKey1);
DesFreeKeyValue(k->DesKey2);
DesFreeKeyValue(k->DesKey3);
AesFreeKey(k->AesKey);
Free(k->Data);
Free(k);
}
// Create a DH object
DH_CTX *IkeDhNewCtx(IKE_DH *d)
{
// Validate arguments
if (d == NULL)
{
return NULL;
}
switch (d->DhId)
{
case IKE_DH_1_ID:
return DhNewGroup1();
case IKE_DH_2_ID:
return DhNewGroup2();
case IKE_DH_5_ID:
return DhNewGroup5();
}
return NULL;
}
// Release the DH object
void IkeDhFreeCtx(DH_CTX *dh)
{
// Validate arguments
if (dh == NULL)
{
return;
}
DhFree(dh);
}
// Developed by SoftEther VPN Project at University of Tsukuba in Japan.
// Department of Computer Science has dozens of overly-enthusiastic geeks.
// Join us: http://www.tsukuba.ac.jp/english/admission/